Molecular Pharmaceutics
Page 4 of 5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
To explore this effect, we measured hydrolysis of 1-b and Ac-b at pH 4. Indeed, an inversion in stability is observed with Ac-b
hydrolyzing more rapidly than 1-b (Figure 3). Specifically, at pH 4, the rate constants (k x 103 minꢀ1) for 1-b, Ac-b, 1-c, and Ac-c
are 8.4, 2.7, 1.9, and 0.9, respectively. The halfꢀlives (min) for 1-b, Ac-b, 1-c, and Ac-c are 83, 25, 364, and 81, respectively.
In summary, the data here support the Kalia/Raines mechanism for hydrolysis. This “resistance to protonation” hypothesis is
further supported by the inversion of stability seen in triazinyl and acetyl hydrazones at low pH. This inversion in stability occurs at
a pH that is biologically relevant—that associated with the cellular uptake and the endosome. Whether it can be exploited
advantageously for the delivery of drugs or other agents remains to be seen.
Supporting Information. Synthetic details, characterization data including spectra and kinetic studies, computational details, and
ACKNOWLEDGMENT
We thank the Robert A. Welch Foundation (Aꢀ0008) and the DOD (W81XWHꢀ12ꢀ1ꢀ0338) for support.
REFERENCES
1. (a) Dynamic Combinatorial Chemistry; Corbett, P.T.; Leclaire, J.; Vial, L.; West, K.R.; Wietor, J.ꢀL.; Sanders, J.K.M.; Otto, S. Chem. Rev.
2006, 106, 3652−3711. (b) Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry; Li, J.; Nowak, P.;
Otto, S. J. Am. Chem. Soc. 2013, 135, 9222–9239. (c) Drug discovery by dynamic combinatorial libraries; Lehn, J.M.; Ramström, O. Nat. Rev.
Drug Discovery, 2002, 1, 26ꢀ36. (d) Implications for Dynamic Covalent Chemistry; Dirksen, A.; Dirksen, S.; Hackeng, T.M.; Dawson, P.E. J.
Am. Chem. Soc. 2006, 128, 15602ꢀ3.
2. N,NꢀDialkylhydrazones in Organic Synthesis. From Simple N,NꢀDimethylhydrazones to Supported Chiral Auxiliaries; Lazny, R.; Nodzewska,
A. Chem. Rev. 2010, 110, 1386ꢀ1434.
3. Controlled release of volatile aldehydes and ketones from dynamic mixtures generated by reversible hydrazone formation;Levrand, B.; Fieber,
W.; Lehn,J.ꢀM.; Herrmann, A. Helv. Chim. Acta, 2007, 90, 2281ꢀ2314.
4. Biological activities of hydrazone derivatives; Rollas, S.; Kucukguzel, S.G. Molecules 2007, 12, 1910ꢀ1939.
5. Design and Synthesis of a Series of Melamineꢀbased Nitroheterocycles with Activity against Trypanosomatid Parasites; Baliani, A.; Bueno, G.J.;
Stewart, M.L.; Yardley, V.; Brun, R.; Barrett, M.P.; Gilbert, I.H. J. Med. Chem. 2005, 48, 5570ꢀ5579.
6. See, for example, the use of carbonyl cyanide 3ꢀchlorophenylhydrazone (SigmaꢀAldrich) in Webber, M.A.; Measuring the activity of active
efflux in Gramꢀnegative bacteria; Coldham, N.G. Methods Molec. Biol. 2010, 642, 173ꢀ180.
7. An AntiꢀCD33 AntibodyꢀCalicheamicin Conjugate for Treatment of Acute Myeloid Leukemia. Choice of Linker; Hamann, P.R.; Hinman, L.M.;
Beyer, C.F.; Lindh, D.; Upeslacis, J.; Flowers, D.A.; Bernstein, I. Bioconjugate Chem. 2002, 13, 40−46ꢀ
8. a) A facile approach for dualꢀresponsive prodrug nanogels based on dendritic polyglycerols with minimal leaching; Zhang, X.; Achazi, K.;
Steinhilber, D.; Kratz, F.; Dernedde, J.; Haag, R. Journal of Controlled Release. 2014, 174, 209ꢀ216. b) Imaging of doxorubicin release from
theranostic macromolecular prodrugs via fluorescence resonance energy transfer; Kruger, H.R.; Schutz, I.; Justies, A.; Licha, K.; Welker, P.;
Haucke, V.; Calderon, M. Journal of Controlled Release. 2014, 194,189ꢀ196.
9. (a) Hydrazoneꢀbased switches, metalloꢀassemblies and sensors; Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963ꢀ1981. (b) BisꢀAliphatic
HydrazoneꢀLinked Hydrogels Form Most Rapidly at Physiological pH: Identifying the Origin of Hydrogel Properties with Small Molecule Kinetic
Studies; McKinnon, D.D.; Domaille, D.W.; Cha, J.N.; Anseth, K.N. Chem. Mater. 2014, 26, 2382ꢀ2387.
10. For recent examples outside the patent literature: a) Preparation and antimicrobial activity of sꢀtriazine hydrazones of 7ꢀhydroxycoumarin and
their metal complexes; Jani, G.R.; Vyas, K.B.; Franco, Z. E-journal Chem. 2009, 6, 1228ꢀ1232. b) Fullerene derivatized sꢀtriazine analogues as
antimicrobial agents; Kumar, A.; Menon, S.K. Eur. J. Med. Chem. 2009, 44, 2178ꢀ2183. c) Air monitoring of aldehydes by use of hydrazine
reagents with a triazine backbone; Berkoudt, T.W.; Egmose, K.N.; Karst, U.; Kempter, C.; Tolbol, C.G. Anal. Bioanal. Chem,. 2002, 372, 639ꢀ646.
11. The 8 year thicket of triazine dendrimers: strategies, targets and applications;Simanek, E. E.; Abdou, H.; Lalwani, S.; Lim, J.; Mintzer, M.;
Venditto, V. J.; Vittur, B., Proc. R. Soc. A, 2010, 466, 1445–1468.
12. An alternative route not pursued here relies on the reaction of C3N3Cl3 with hydrazine to arrive at the dichlorotriazine intermediate:
Polovkovych, S.V.; Karkhut, A.I.; Marintsova, N.G.; Leysk, R.B.; Synthesis of New Schiff Bases and Polycyclic Fused Thiopyranothiazoles
Containing 4,6ꢀDichloroꢀ1,3,5ꢀTriazine Moiety; Zimenkovsky, B.S.; Novikov, V.P. J. Heter. Chem. 2013, 1419ꢀ1424.
ACS Paragon Plus Environment