Vyas et al.
New Route for Synthesis of Fluorescent SnO Nanoparticles for Selective Sensing of Fe(III) in Aqueous Media
2
Table II. Comparison of various parameters of the present study with
4
. V. S. Anitha, S. S. Lekshmy, and K. Joy, J. Alloys Compd. 675, 331
that of some other recent reports based on nanomaterials for sensing of
(2016).
3
+
.
Fe
5
6
. A. Kar, S. Kundu, and A. Patra, J. Phys. Chem. C 115, 118 (2011).
. E. L. Que, D. W. Domaille, and C. J. Chang, Chem. Rev. 108, 1517
Sensing
LOD
(2008).
Measure mode
nanomaterial
(ꢄM) Medium
Ref.
[20]
7. A. Aroun, J. L. Zhong, R. M. Tyrrell, and C. Pourzand, Photochem.
Colorimetry/
Fluorimetry
Fluorimetry
Fluorimetry
Colorimetry
Fluorimetry
Fluorimetry
RBD-UCNPs
1ꢂ2 Aqueous
Photobiol. Sci. 11, 118 (2012).
8. S. Sen, S. Sarkar, B. Chattopadhyay, A. Moirangthem, A. Basu,
K. Dhara, and P. Chattopadhyay, Analyst 137, 3335 (2012).
9. J. Xu, M. D. Knutson, C. S. Carter, and C. Leeuwenburgh, PLoS
One 3, e2865 (2008).
10. V. Mahendran and J. Philip, Langmuir 29, 4252 (2013).
11. J. S. Kim and D. T. Quang, Chem. Rev. 107, 3780 (2007).
Graphene Qdot’s
TAZ-BTTC6 NPs
pHEA-1/2/3 @AuNP40
AGO
10
Aqueous
[21]
[22]
[23]
[24]
0ꢂ1 Aqueous
8
–
Aqueous
Aqueous
F-SnO2
2
Aqueous This work
12. S. K. Sahoo, D. Sharma, R. K. Bera, G. Crisponi, and J. F. Callan,
Chem. Soc. Rev. 41, 7195 (2012).
1
3. H. Zhou, J. Wang, Y. Chen, W. Xi, Z. Zheng, D. Xu, Y. Cao, G. Liu,
W. Zhu, J. Wu, and Y. Tian, Dye. Pigment. 98, 1 (2013).
reported systems. The advantage of the present system is
that the preparation of sensing material (F-SnO ꢁ is com-
2
14. C. McDonagh, C. S. Burke, and B. D. MacCraith, Chem. Rev.
108, 400 (2008).
15. G. Zhang, B. Lu, Y. Wen, L. Lu, and J. Xu, Sensors Actuators, B
Chem. 171, 786 (2012).
paratively easy when a simple nitro compound such as
p-nitro toluene is used for this purpose and also the corre-
sponding amino compound thus obtained can be used for
16. L. Qiu, C. Zhu, H. Chen, M. Hu, W. He, and Z. Guo, Chem.
Commun. 50, 4631 (2014).
some other purpose. The F-SnO obtained by this type of
2
organic transformation is generally treats as waste material
but the present study demonstrated that it is a very useful
17. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Chem. Rev.
112, 2739 (2012).
3
+
material for sensing of Fe in aqueous media.
18. C.-C. Huang and H.-T. Chang, Anal. Chem. 78, 8332 (2006).
9. J. S. Lee, M. S. Han, and C. A. Mirkin, Angew. Chemie-Int. Ed.
6, 4093 (2007).
20. Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, Chem. Commun.
9, 7797 (2013).
1
4
4
. CONCLUSION
4
A simple method for the synthesis of fluorescent SnO2
21. F. Xu, H. Shi, X. He, K. Wang, D. He, L. Yan, X. Ye, J. Tang,
nanoparticles has been developed; otherwise it is difficult
J. Shangguan, and L. Luo, Analyst 140, 3925 (2015).
to prepare. The SnO thus formed during the reduction
2
22. J. Wang, X. Xu, L. Shi, and L. Li, ACS Appl. Mater. Interfaces
IP: 5.62.155.118 On: Mon, 09 Apr 2018 17:40:39
of nitro compounds used to treat as waste material; how-
5, 3392 (2013).
Copyright: American Scientific Publishers
ever the present study demonstrated its applicat iDo en li av se r ae d b y2 3I .n gD e. nJ .t aP hillips, G.-L. Davies, and M. I. Gibson, J. Mater. Chem. B
3
+
3, 270 (2015).
material for selective sensing of Fe in aqueous media.
Detail study revealed that the defect of oxygen vacancies
2
2
4. L. He, J. Li, and J. H. Xin, Biosens. Bioelectron. 70, 69 (2015).
5. C. D. Gutsche and M. Iqbal, Organic Syntheses 68, 234 (1990).
on the surface of the F-SnO generated during synthesis
2
26. C. D. Gutsche, J. A. Levine, and P. K. Sujeeth, J. Org. Chem.
is the source of emission because of the recombination of
electrons with the photo-excited hole in the valance band.
After addition of Fe , the quenching in emission inten-
sity observed is due to the nonradiative recombination of
electrons and holes at the surface of the nanoparticles. The
50, 5802 (1985).
27. X. Xu, J. Zhuang, and X. Wang, J. Am. Chem. Soc. 130, 12527
(2008).
8. A.-H. Lim, H.-W. Shim, S.-D. Seo, G.-H. Lee, K.-S. Park, and D.-W.
Kim, Nanoscale 4, 4694 (2012).
9. R. Liu, S. Yang, F. Wang, X. Lu, Z. Yang, and B. Ding, ACS Appl.
Mater. Interfaces 4, 1537 (2012).
0. Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang, and A. K. Y. Jen, Adv.
Mater. 28, 6478 (2016).
1. J. Xu, Y. Li, H. Huang, Y. Zhu, Z. Wang, Z. Xie, X. Wang, D. Chen,
and G. Shen, J. Mater. Chem. 21, 19086 (2011).
2. P. J. Goutam, D. K. Singh, and P. K. Iyer, J. Phys. Chem. C
116, 8196 (2012).
3
+
2
2
3
3
3
3
3
F-SnO thus obtained has also been used for analysis of
2
3
+
Fe in real samples and the results are satisfactory.
Acknowledgments: CSIR-CSMCRI publication No.
1
98. Financial support in the form of Network project
(
CSC 0134) from CSIR and fellowship from University
3. Y. C. Her, J. Y. Wu, Y. R. Lin, and S. Y. Tsai, Appl. Phys. Lett.
Grant Commission (AK) are gratefully acknowledged. We
thank G. R. Bhadu, Dr. D. N. Srivastava, J. C. Chaudhary,
Laiya Riddhi P. and V. Vakani for recording TEM, SEM
images, XRD data and IR spectra, respectively.
89, 87 (2006).
4. X. T. Zhou, J. G. Zhou, M. W. Murphy, J. Y. P. Ko, F. Heigl,
T. Regier, R. I. R. Blyth, and T. K. Sham, J. Chem. Phys.
128, 144703 (2008).
35. F. Gu, S. F. Wang, C. F. Song, M. K. Lü, Y. X. Qi, G. J. Zhou,
D. Xu, and D. R. Yuan, Chem. Phys. Lett. 372, 451 (2003).
36. F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan,
J. Phys. Chem. B 108, 8119 (2004).
37. H. Zhang, Y. Chen, M. Liang, L. Xu, S. Qi, H. Chen, and X. Chen,
Anal. Chem. 86, 9846 (2014).
38. M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, and Y. Wang, ACS Nano
4, 681 (2010).
References and Notes
1
. X. Liu, G. Zhou, S. W. Or, and Y. Sun, RSC Adv. 4, 51389 (2014).
. J. Hu, Y. Bando, Q. Liu, and D. Golberg, Adv. Funct. Mater. 13, 493
2
(
2003).
. Z. W. Chen, J. K. L. Lai, and C. H. Shek, Phys. Lett. A 345, 391
2005).
3
(
Received: 9 March 2017. Accepted: 13 May 2017.
J. Nanosci. Nanotechnol. 18, 3954–3959, 2018
3959