Communication
Dalton Transactions
centred at 3000 cm−1 disappeared, indicating the removal of
the occluded water solvent; however, the peaks at 2856 and
2926 cm−1, which are indicative of coordinated MeOH,23,24
were retained. Activation of the framework under vacuum at
temperatures above 110 °C resulted in an amorphous powder
with reduced surface area (ca. 230 m2 g−1), indicative of frame-
work collapse. Consequently, it was postulated that the
6-coordination of the Mn(V) site is important to the structural
integrity of the framework upon guest desorption.
To investigate whether the terminal nitride ligands interacts
strongly with the guest CO2 molecules, the ν(MnN) stretch at
1090 cm−1 in the DRIFTS spectrum of [Zn{MnN(CN)4(MeOH)}]
was monitored at various loadings of CO2 (see ESI†). As the
concentration of CO2 increased, no change in ν(MnN) was
observed, indicating that the nitride ligand is not sufficiently
nucleophilic to interact strongly with CO2.
1 C. J. Kepert, in Porous Materials, John Wiley & Sons, Ltd,
2011, ch. 1, pp. 1–67.
2 J. R. Li, Y. G. Ma, M. C. McCarthy, J. Sculley, J. M. Yu,
H. K. Jeong, P. B. Balbuena and H. C. Zhou, Coord. Chem.
Rev., 2011, 255, 1791–1823.
3 K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald,
E. D. Bloch, Z. R. Herm, T. H. Bae and J. R. Long, Chem.
Rev., 2012, 112, 724–781.
4 J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown and
J. Liu, Chem. Soc. Rev., 2012, 41, 2308–2322.
5 D. M. D’Alessandro, B. Smit and J. R. Long, Angew. Chem.,
Int. Ed., 2010, 49, 6058–6082.
6 A. Demessence, D. M. D’Alessandro, M. L. Foo and
J. R. Long, J. Am. Chem. Soc., 2009, 131, 8784–8786.
7 T. M. McDonald, D. M. D’Alessandro, R. Krishna and
J. R. Long, Chem. Sci., 2011, 2, 2022–2028.
The complex [Ph4P]2[MnN(CN)4]·2H2O has previously been
shown to catalyse the epoxidation of alkenes and the oxidation
of alcohols to aldehydes.10 Preliminary investigations into the
ability of [Zn{MnN(CN)4(H2O)}]·2H2O·MeOH to catalyse the
epoxidation of cyclopentene by H2O2 indicated some limited
8 T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers,
C. S. Hong and J. R. Long, J. Am. Chem. Soc., 2012, 134,
7056–7065.
9 S. Choi, T. Watanabe, T. H. Bae, D. S. Sholl and
C. W. Jones, J. Phys. Chem. Lett., 2012, 3, 1136–1141.
degree of conversion to cyclopentene oxide; however, this con- 10 H. K. Kwong, P. K. Lo, K. C. Lau and T. C. Lau, Chem.
version was still observed in samples where the catalyst was Commun., 2011, 47, 4273–4275.
removed from the reaction medium after several hours, 11 J. Bendix, K. Meyer, T. Weyhermuller, E. Bill, N. Metzler-
suggesting that some degree of leaching of the active metal
complex from the framework had occurred (see ESI†).
In summary, a new porous coordination framework, [Zn-
Nolte and K. Wieghardt, Inorg. Chem., 1998, 37, 1767–1775.
12 T. D. Keene, M. J. Murphy, J. R. Price, D. J. Price and
C. J. Kepert, Dalton Trans., 2011, 40, 11621–11628.
{MnN(CN)4(H2O)}]·2H2O·MeOH, based upon the functional 13 R. Ohtani, S. Kitagawa and M. Ohba, Polyhedron, 2013, 52,
[MnN(CN)4]2− subunit, has been synthesised and character-
591–597.
ised. A coordinated solvent molecule on the Mn(V) centre is 14 L. Ma, J. M. Falkowski, C. Abney and W. Lin, Nat. Chem.,
integral to the structural integrity of the desolvated framework. 2010, 2, 838–846.
The material exhibits a preference for CO2 over N2 at tempera- 15 A. Corma, H. Garcia and F. Xamena, Chem. Rev., 2010, 110,
tures and pressures relevant to flue gas separation. However, 4606–4655.
the terminal nitride functionality exhibits a weak affinity 16 M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012,
towards CO2 compared with other pendant nitrogen-based 112, 1196–1231.
moieties in frameworks (e.g., alkylamines). This type of funda- 17 S. S. Kaye and J. R. Long, J. Am. Chem. Soc., 2005, 127,
mental understanding of host–guest chemistry in porous 6506–6507.
coordination solids paves the way towards the design of multi- 18 K. W. Chapman, P. D. Southon, C. L. Weeks and
functional materials with potential industrial applications. C. J. Kepert, Chem. Commun., 2005, 3322–3324.
This work was supported by the Australian Research 19 J. T. Culp, S. Natesakhawat, M. R. Smith, E. Bittner,
Council and the Science and Industry Endowment Fund. We
gratefully acknowledge Dr Mohammad Choucair for collecting
the DRIFTS data.
C. Matranga and B. Bockrath, J. Phys. Chem. C, 2008, 112,
7079–7083.
20 A. H. Yuan, R. Q. Lu, H. Zhou, Y. Y. Chen and Y. Z. Li, Cryst-
EngComm, 2010, 12, 1382–1384.
21 R. K. Motkuri, P. K. Thallapally, B. P. McGrail and
S. B. Ghorishi, CrystEngComm, 2010, 12, 4003–4006.
22 P. K. Thallapally, R. K. Motkuri, C. A. Fernandez, B. P. McGrail
and G. S. Behrooz, Inorg. Chem., 2010, 49, 4909–4915.
23 L. J. Burcham, L. E. Briand and I. E. Wachs, Langmuir,
2001, 17, 6175–6184.
Notes and references
‡Crystal data for C5H10MnN5O4Zn (M = 324.49): tetragonal, space group P42/mmc
(no. 131), a = 7.51110(10), c = 13.4593(5) Å, V = 759.33(3) Å3, Z = 2, T = 100(2) K,
μ(Mo-Kα) = 2.416 mm−1, ρcalc = 1.419 g mm−3, 11 832 reflections measured
(9.78 ≤ 2θ ≤ 52.68), 469 unique (Rint = 0.0413). R1 = 0.0429 (I ≥ 2σ(I)) and wR2
=
24 L. J. Burcham, L. E. Briand and I. E. Wachs, Langmuir,
2001, 17, 6164–6174.
0.1233 (all data). CCDC 933557 contains the supplementary crystallographic data
for this paper.
13310 | Dalton Trans., 2013, 42, 13308–13310
This journal is © The Royal Society of Chemistry 2013