4 A. Corma, M. Domine, J. A. Gaona, J. L. Jorda, M. T. Navarro,
F. Rey, J. Perez-Pariente, J. Tsuji, B. McCulloch and L. T. Nemeth,
Chem. Commun., 1998, 2211–2212.
5 C. Perego, A. Carati, P. Ingallina, M. A. Mantegazza and
G. Bellussi, Appl. Catal., A, 2001, 221, 63–72.
6 T. Tatsumi, W. B. Fan, R. G. Duan, T. Yokoi, P. Wu and
Y. Kubota, J. Am. Chem. Soc., 2008, 130, 10150–10164.
7 B. M. Weckhuysen, E. Sacaliuc, A. M. Beale and T. A. Nijhuis,
J. Catal., 2007, 248, 235–248.
8 P. Wu, T. Komatsu and T. Yashima, J. Catal., 1997, 168, 400–411.
9 T. Blasco, A. Corma, M. T. Navarro and J. P. Pariente, J. Catal.,
1995, 156, 65–74.
10 A. Katz, J. M. Notestein, A. Solovyov, L. R. Andrini, F. G. Requejo
and E. Iglesia, J. Am. Chem. Soc., 2007, 129, 15585–15595.
11 F. Figueras and H. Kochkar, Catal. Lett., 1999, 59, 79–81.
12 A. Bhaumik and T. Tatsumi, Catal. Lett., 2000, 66, 181–184.
13 T. Tatsumi, K. A. Koyano and N. Igarashi, Chem. Commun., 1998,
325–326.
14 H. Q. Chu, Y. Wan and D. Y. Zhao, Catal. Today, 2009, 148, 19–27.
15 J. Iglesias, J. A. Melero and J. Sainz-Pardo, J. Mol. Catal. A:
Chem., 2008, 291, 75–84.
16 L. L. Wang, Y. M. Liu, W. Xie, H. H. Wu, X. H. Li, M. Y. He and
P. Wu, J. Phys. Chem. C, 2008, 112, 6132–6138.
17 J. A. Melero, J. Iglesias, J. M. Arsuaga, J. Sainz-Pardo,
P. de Frutos and S. Blazquez, J. Mater. Chem., 2007, 17, 377–385.
18 K. Okamoto, Y. Goto and S. Inagaki, J. Mater. Chem., 2005, 15,
4136–4140.
19 P. Fontaine, M. Goldmann and F. Rondelez, Langmuir, 1999, 15,
1348–1352.
20 S. Inagaki, S. Guan, T. Ohsuna and O. Terasaki, Nature, 2002,
416, 304–307.
21 Y. Goto and S. Inagaki, Chem. Commun., 2002, 2410–2411.
22 J. Alauzun, A. Mehdi, C. Reye and R. J. P. Corriu, J. Mater.
Chem., 2005, 15, 841–843.
23 F. Hoffmann, M. Gungerich, P. J. Klar and M. Froba, J. Phys.
Chem. C, 2007, 111, 5648–5660.
24 X. T. Gao and I. E. Wachs, Catal. Today, 1999, 51, 233–254.
25 S. Klein, S. Thorimbert and W. F. Maier, J. Catal., 1996, 163,
476–488.
26 M. Crocker, R. H. M. Herold, A. G. Orpen and M. T. A.
Overgaag, J. Chem. Soc., Dalton Trans., 1999, 3791–3804.
27 S. Sakugawa, K. Wada and M. Inoue, J. Catal., 2010, 275,
280–287.
28 F. Berube, B. Nohair, F. Kleitz and S. Kaliaguine, Chem. Mater.,
2010, 22, 1988–2000.
29 Z. G. Guo, W. M. Liu and B. L. Su, J. Colloid Interface Sci., 2011,
353, 335–355.
Fig. 3 (a) Catalytic activity of LOTS (aged at 250 1C) in epoxidation
of cyclohexene; (b) yield of epoxycyclohexane vs. reaction time using
m-TS, TS-1 and LOTS as catalysts.
orders of magnitude higher than those of other TS catalysts.
LOTS also shows good catalytic performance in methanol or
acetonitrile and its catalytic activity can compete with those of
layered alkoxysilylated Ti-containing silicates32 under the
same reaction condition despite of its much lower surface area
value (Table S2, ESIw). Besides, the better catalytic activity for
LOTS in methanol than that in acetonitrile further confirmed
that LOTS is hydrophobic.33–35 The exceptional catalytic
activity is probably attributable to the superhydrophobicity
resulting from high phenyl group content (Si : phenyl = 1 : 1)
and the fully condensed titanosilicate frameworks.
In summary, we have described a green, simple and template-
free synthetic route for the synthesis of defect-less, organic-inserted
layered titanosilicates. The layered hybrid materials provide a
superhydrophobic surface and well-dispersed titanium species.
They have high thermal stability and display outstanding catalytic
activity in the epoxidation of olefins at room temperature. The
materials are expected to provide new opportunities for applying
superhydrophobic materials in industrial catalytic applications.
We are grateful for financial support from the National Science
Foundation of China (20873122, 21003106), the Innovative Team
Project of Zhejiang Province (2010R50014-06), Science Foundation
of Zhejiang Province (Y4090097), Fok Ying Tung Education
Foundation (131015) and the Fundamental Research Funds from
the Central Universities (2012QNA3014). We thank Dr Yan Xu
and Dr Ningdong Feng for help on NMR measurement.
30 I. Arends and R. A. Sheldon, Appl. Catal., A, 2001, 212, 175–187.
31 R. Noyori, M. Aoki and K. Sato, Chem. Commun., 2003,
1977–1986.
32 L. L. Wang, Y. Wang, Y. M. Liu, H. H. Wu, X. H. Li, M. Y. He
and P. Wu, J. Mater. Chem., 2009, 19, 8594–8602.
33 N. Jappar, Q. Xia and T. Tatsumi, J. Catal., 1998, 180, 132–141.
34 W. B. Fan, P. Wu, S. Namba and T. Tatsumi, J. Catal., 2006, 243,
183–191.
Notes and references
1 S. P. Newman and W. Jones, New J. Chem., 1998, 22, 105–115.
2 S. L. Burkett, A. Press and S. Mann, Chem. Mater., 1997, 9, 1071–1073.
3 J. Minet, S. Abramson, B. Bresson, C. Sanchez, V. Montouillout
and N. Lequeux, Chem. Mater., 2004, 16, 3955–3962.
35 A. Corma, P. Esteve and A. Martinez, J. Catal., 1996, 161, 11–19.
c
6956 Chem. Commun., 2012, 48, 6954–6956
This journal is The Royal Society of Chemistry 2012