Conformational Analysis of Gemini Surfactants
J. Phys. Chem. B, Vol. 102, No. 45, 1998 8973
the molecular model of pxy8, in which two n-octyl segments
are perpendicular to the p-phenylenedimethylene plane contain-
ing two nitrogen atoms, the calculated parameter is 0.33. On
the basis of these parameters, we assume that the micellar shape
for oxy8 may be cylindrical and that for mxy8 and pxy8 may
be spherical.
atoms of the rigid spacer is coplanar with the plane of the
benzene ring.
Preferential stabilization of a specific conformation probably
occurs on the water surface when these molecules are adsorbed
at the air/water interface.
If we assume that the aromatic carbons as well as some of
the methylene groups of the n-octyl chain are also hydrated by
their location in the water phase, the parameters (0.32-0.33)
which are characteristic of a spherical shape are obtained. Thus,
the position (environment) of a benzene ring in the micelle is
important for estimation of the shape of the micelle.
References and Notes
(
1) Okabayashi, H.; Okuyama, M.; Kitagawa, T. Bull. Chem. Soc. Jpn.
1
975, 48, 2264.
(2) Okabayashi, H.; Abe, M. J. Phys. Chem. 1980, 84, 999.
(
3) Okabayashi, H.; Yoshida, T.; Terada, Y.; Ikeda, T.; Matsushita,
K. Z. Naturforsch 1981, 36a, 1352.
4) Okabayashi, H.; Yoshida, T.; Ikeda, T.; Matsuura, H.; Kitagawa,
(
1
Consideration of the results of the change in the H NMR
T. J. Am. Chem. Soc. 1982, 104, 5399.
chemical shift suggests that the packing parameters of the mxy8
and oxy8 molecules may become smaller (ca. 0.33) and leads
us to the assumption that both mxy8 and oxy8 adopt a spherical
shape.
(5) Okabayashi, H.; Taga, K.; Tsukamoto, K.; Tamaoki, H.; Yoshida,
T.; Matsuura, H. Chem. Scr. 1985, 25, 153.
(6) (a) Tsukamoto, K.; Ohshima, K.; Taga, K.; Okabayashi, H.;
Matsuura, H. J. Chem. Soc., Faraday Trans. 1 1987, 83, 789. (b)
Okabayashi, H.; Tsukamoto, K.; Ohshima, K.; Taga, K.; Nishio, E. J. Chem.
Soc., Faraday Trans. 1 1988, 84, 1639.
(
7) Takahashi, H.; Nakayama, Y.; Hori, H.; Kihara, K.; Okabayashi,
H.; Okuyama, M. J. Colloid Interfac. Sci., 1976, 54(1), 102.
8) Okabayashi, H.; Kihara, K.; Okuyama, M. In Colloid and Interface
Science; Kerker, M., Rowell, R. L., Zettlemoyer, A. C. Eds.; Academic
Press: New York, 1976; Vol. II, p 357.
(9) Okabayashi, H.; Yoshida, T.; Terada, Y.; Matsushita, K. J. Colloid
Interfac. Sci. 1982, 87(2), 527.
(10) Okabayashi, H.; Taga, K.; Miyagai, K.; Uehara, T.; Yoshida, T.;
Nishio, E. J. Phys. Chem., 1991, 95, 7932.
Conclusion
(
Three gemini surfactants (oxy8, mxy8, and pxy8) with o-,
m-, and p-phenylenedimethylene spacers have been synthesized.
The conformational changes caused by micellization of these
surfactants, and their related compounds in D2O were investi-
gated by selective-decoupling 13C NMR and 1H NMR methods.
It was found that introduction of rigid spacers into the gemini
surfactants promotes stabilization of the distance between the
two hydrophilic groups, since the specific conformation of the
spacer portion is preferentially stabilized upon micellization.
For the two series with rigid and flexible spacers, the conforma-
tion of the two n-octyl chains tends to take up an all-trans
conformation, implying that the two n-octyl chains play a
significant role in micellar behavior. For the dimeric surfactants
with flexible spacers, the population of the trans form of the
(
11) Taga, K.; Ohshima, K.; Matsuoka, H.; Yoshida, T.; Okabayashi,
H. Colloids and Surfaces A 1993, 81, 59.
12) Okabayashi, H.; Hirata, H.; Suzuki, Y.; Taga, K.; Mathew, C.
Vibrational Spectroscopy 1996, 10, 239.
13) Etori, H.; Yamada, Y.; Taga, K.; Okabayashi, H.; Ohshima K.;
O’Connor, C. J. Vibrational Spectroscopy 1997, 14, 133.
14) Aoki, K.; Okabayashi, H.; Maegawa, S.; Mizuno, T.; Murata, M.;
Hiramatsu, K. Biochim. Biophys. Acta 1982, 703, 11.
15) Adler, A. J.; Ross, D. G.; Chen, K.; Stafford, P. A.; Woiszwillo,
(
(
(
(
M. J.; Fasman, G. D. Biochemistry 1974, 13, 616.
(16) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc.,
Faraday Trans. 1 1976, 72, 1525.
1
2
CsH2- CsH2 segment of the spacer tends to decrease upon
(
17) Zana, R.; Talmon, Y. Nature 1993, 362, 228.
micellization, indicating that the steric compressive strain of
the polymethylene spacer, caused by aggregation of the two
n-octyl chains, may bring about an increase in the gauche-
population. Conversely, for the dimeric surfactants with
(18) Diamant, H.; Andelman, D. Langmuir 1994, 10, 2910.
(19) Stein, T. M.; Gelman, S. H. J. Am. Chem. Soc. 1992, 114, 3943.
20) Nusselder, J.-J. H.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1989,
11, 5000.
(
1
(
21) Menger, F. M.; Yamasaki, Y. J. Am. Chem. Soc. 1993, 115, 3840.
1
aromatic spacers, the population of the trans form of the CH2-
(22) Menger, F. M.; Littau, C. A. J. Am. Chem. Soc. 1991, 113, 1451.
(23) Menger, F. M.; Littau, C. A. J. Am. Chem. Soc. 1993, 115, 10083.
2
CH2 segments of the two n-octyl chains tends to decrease upon
(
(
24) Rosen, M. J. CHEMTECH 1993, 23, 30.
micellization.
25) Rosen, M. J.; Zhu, Z. H.; Hua, X. Y. J. Am. Oil Chem. Soc. 1992,
For the oxy8 molecules, the micelles are in a loosely packed
state owing to the presence of gauche forms in the skeleton of
the rigid spacer, because of preferential stabilization of a specific
conformation upon micelle formation.
6
9, 30.
(26) Takeuchi, S.; Uzawa, J.; Seto, H.; Yonehara, H. Tetrahedron Lett.
977, 34, 2943.
(
(
1
27) Zana, R.; Benrraou, M.; Rueff, R. Langmuir 1991, 7, 1072.
28) Alami, E.; Levy, H.; Zana, R.; Skoulios, A. Langmuir 1993, 9,
Since the difference in energy between the rotational isomers
for the mxy8 molecules in D2O may be small, we may speculate
that the hydrophobic interaction between the two n-octyl chains
and the aromatic ring plays a critical role in preferential
stabilization of type I in the micellar state. We may therefore
conclude that for oxy8 and mxy8 the benzene ring of the spacer
is directed toward the hydrophobic core and that the plane
containing the two nitrogen atoms and the two methylene-carbon
940.
(
(
(
29) Castellano, S.; Bothner-By, A. A. J. Chem. Phys. 1964, 41, 3863.
30) Abraham, R.-J.; Pachler, K. G. R. Mol. Phys. 1963-1964, 7, 165.
31) Abraham, R.-J.; Gatti, G. J. Chem. Soc. 1969, B, 961.
(32) Terui, Y.; Ueyama, M.; Satoh, S.; Ton, K. Tetrahedron 1974, 30,
1465.
33) Hirata, H.; Hattori, N.; Ishida, M.; Okabayashi, H.; Frusaka, M.;
Zana, R. J. Phys. Chem. 1995, 99, 17778.
34) Jacobs, J. J.; Anderson, R. A.; Watson, T. R. J. Pharm. Pharmacol.
1971, 23, 148.
(
(