K. Micskei et al. / Tetrahedron Letters 47 (2006) 6117–6120
6119
Table 3. Reduction of C1–S bonds by chromium(II) complexes
The UV–visible spectra (Fig. 1) show the decomposition
of the organometallic bond resulting in the elimination
product.
Entry Complex CrIILa Substrate pHb Conversionc,d (%)
1
2
3
4
5
6
7
8
[CrII(OAc)2]
[CrII(MAL)]
[CrII(GLY)]+
[CrII(IDA)]
3
7
3
7
3
7
3
7
3
7
3
7
6.5
6.5
4.0
4.0
6.0
6.0
6.0
6.0
6.5
6.5
6.5
6.5
N.r.
N.r.
33
>95
92
>95
91
>95
73
In order to test the hypothesis of the intermediate radi-
cal (Scheme 1), the reaction of 7 was performed in the
presence of acrylonitrile.12 Analysis of the reaction mix-
ture indicated the formation of C-glucosyl derivative
1613 as a product of radical coupling.
9
[CrII(NTA)]À
[CrII(EDTA)]2À
In this work, we have demonstrated that hydrolytically
stable anomeric C–S bonds can be cleaved by
chromium(II) complexes to produce a glycosyl radical
suitable for coupling as well as a C(1)–Cr(III) organo-
metallic bond featuring a carbanionic anomeric centre.
10
11
12
>95
>90
>95
a L: malonic acid (MAL); glycine (GLY); iminodiacetic acid (IDA);
nitrilotriacetic acid (NTA); ethylenediaminetetra-acetic acid
(EDTA).
b Reaction time was 18 h in all reactions.
c Calculated from the 1H NMR spectra.
Acknowledgements
d Product:
3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex-1-
enitol (12).
Financial support is acknowledged from the Hungarian
Scientific Research Fund (Grant OTKA, No. T46942).
[CrII(GLY)]+, [CrII(IDA)], and [CrII(NTA)]À complexes
was also suitable, indicating that the 2-benzothiazolyl
sulfonyl moiety makes cleavage of the C–S bond espe-
cially easy. (Unfortunately, all efforts so far made
towards the preparation of the sulfonyl counterpart of
3 failed because of the extreme lability of that
compound.)
References and notes
1. Collins, P. M.; Ferrier, R. J. Monosaccharides—Their
Chemistry and Their Roles in Natural Products; John Wiley
& Sons: Chichester, 1995.
2. Praly, J.-P. Adv. Carbohydr. Chem. Biochem. 2001, 56, 65–
151.
We suggest that radical formation is the first step in C–S
bond breaking (Scheme 1) with the cleavage of a sulfide
or sulfinate from the possible intermediate radical anion.
The structure of the aglycon (R) has a strong bearing on
the electron acceptor capacity of the substrates. The 2-
benzoxazolyl moiety was found to be the most effective
for thioglycosides and the 2-benzothiazolyl moiety for
glycosyl sulfones. The radical may equilibrate with a
glycosyl-Cr(III) intermediate which then decomposes
to give glycals 12–15.
´
3. Somsak, L. Chem. Rev. 2001, 101, 81–135.
´
4. (a) Lubineau, A.; Auge, J.; Queneau, Y. Synthesis 1994,
741–760; (b) Scherrmann, M. C.; Lubineau, A. Actualite
Chimique 2003, 72–76; (c) Lubineau, A.; Auge, J. Water as
solvent in organic synthesis. Modern Solvents in Organic
Synthesis, 1999; pp 1–39; (d) Lubineau, A. Chem. Ind.
1996, 123–126.
´
´
5. (a) Kovacs, G.; Gyarmati, J.; Somsak, L.; Micskei, K.
´
Tetrahedron Lett. 1996, 37, 1293–1296; (b) Kovacs, G.;
´
´
Toth, K.; Dinya, Z.; Somsak, L.; Micskei, K. Tetrahedron
´
´
1999, 55, 5253–5264; (c) Kovacs, G.; Micskei, K.; Somsak,
L. Carbohydr. Res. 2001, 336, 225–228.
6. Reviews: (a) Wessjohann, L. A.; Scheid, G. Synthesis 1999,
1.2
0.8
0.4
0
1–36; (b) Furstner, A. Chem. Rev. 1999, 99, 991–1045; (c)
¨
Hodgson, D. M. J. Organomet. Chem. 1994, 476, 1–5; (d)
Cintas, P. Synthesis 1992, 248–257.
´
´
7. (a) Pouilly, P.; Chenede, A.; Mallet, J.-M.; Sinay, P.
¨
Tetrahedron Lett. 1992, 33, 8065–8068; (b) Skrydstrup, T.;
´
Mazeas, D.; Elmouchir, M.; Doisneau, G.; Riche, C.;
Chiaroni, A.; Beau, J.-M. Chem. Eur. J. 1997, 3, 1342–
1356.
8. (a) Zhang, Z.; Magnusson, G. Carbohydr. Res. 1996, 295,
41–56; (b) Mereyala, H. B.; Reddy, G. V. Tetrahedron
1991, 47, 6435–6448; (c) Zinner, H.; Peseke, K. Chem. Ber.
1965, 98, 3515–3519; (d) Zinner, H.; Peseke, K. Chem. Ber.
1965, 98, 3508–3514; NMR data: (e) Khodair, A. I.; Al-
Masoudi, N. A.; Gesson, J.-P. Nucleosides, Nucleotides,
Nucleic Acids 2003, 22, 2061–2076; (f) Collins, P. M. J.
Chem. Soc. Perkin Trans. 1 1974, 1069–1075; (g) Wagner,
G. Arch. Pharm. Ber. Deutsch. Pharm. Ges. 1963, 296,
0
200
400
Time (min)
600
800
´
576–584; (h) Skrydstrup, T.; Mazeas, D.; Elmouchir, M.;
Doisneau, G.; Riche, C.; Chiaroni, A.; Beau, J.-M. Chem.
Eur. J. 1997, 3, 1342–1356.
Figure 1. Typical kinetic curve5a recorded at 320 nm demonstrating
elimination of the organochromium(III) intermediate in the reaction of
9. Typical procedure for the preparation of glycals: EDTA
(1.265 g, 3.4 mmol, 6 equiv) was dissolved in a mixture of
water (30 ml) and DMF (30 ml), and stirred under argon.
[CrII(EDTA)]2À and
7
([CrII] = 5 mM, [EDTA] = 7.4 mM, [7] =
0.5 mM, pH = 5, H2O/DMF = 1/1, t = 25 ꢁC in 1.00 cm cell).