2609
A. Thomann et al.
Letter
Synlett
group properties of the tetrazolyl group (Scheme 3 and Ta-
ble 3).
Acknowledgment
We thank Michael Hoffmann for recording HRMS spectra and Volker
Huch for the determination of the X-ray crystal structure of com-
pound 1. Many thanks go to Nadja Klippel for synthetic support.
To study the robustness and broaden its applicability for
combinatorial chemistry and with regard to the good over-
all yields we investigated if the reaction could also be used
as a one-pot sequence to introduce two different substitu-
ents using intermediate 1 as starting material. Consequent-
ly, we used one equivalent of benzylamine and after 10
minutes of reaction time, we added one equivalent of thio-
phenol to replace the remaining tetrazole substituent from
in situ prepared 5. The hetero-4,6-disubstituted product 24
was successfully obtained in this one-pot, two-step reac-
tion (Scheme 3 and Table 3).
To demonstrate the applicability for library synthesis
and with respect to the excellent yield of 1, we speculated
whether the method could be also exploited for another
one-pot procedure which directly starts from the commer-
cially available chlorinated starting material. The idea was
to charge the reaction with a nucleophile after 1 was
formed in situ and apply 10 additional minutes of micro-
wave irradiation to yield the final product. For this reaction,
we chose thiophenol as a model reactant, and as expected,
the two-step one-pot sequence showed complete conver-
sion within 20 minutes, and 17 was isolated in high yield
(Table 3). These model reactions clearly demonstrate the
good leaving-group characteristics of the tetrazole group
(fast to replace by nucleophiles and easy to remove from the
reaction mixture) for SNAr reactions at 2-thiomethylpyrimi-
dine cores. By this means, homo- and hetero-disubstituted
compounds were easily prepared.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
o
nrtIo
g
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) (a) Mohite, P. B.; Bhaskar, V. H. Adv. Pharm. Bull. 2012, 2, 31.
(b) Upadhayaya, R. S.; Jain, S.; Sinha, N.; Kishore, N.; Chandra, R.;
Arora, S. K. Eur. J. Med. Chem. 2004, 39, 579.
(2) (a) Herr, R. Bioorg. Med. Chem. 2002, 10, 3379. (b) Myznikov, L.
V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd. 2007,
43, 1. (c) Ostrovskii, V. A.; Trifonov, R. E.; Popova, E. A. Russ.
Chem. Bull. 2012, 61, 768.
(3) Dominguez, C.; Toledo-Sherman, L. M.; Winkler, D.; Brookfield,
F.; De Aguiar Pena, P. C. WO 2011091153A1, 2011.
(4) Dominguez, C.; Toledo-Sherman, L. M.; Courtney, S. M.; Prime,
M.; Mitchell, W.; Brown, C. J.; De Aguiar Pena, P. C.; Johnson, P.
WO 2013016488A1, 2013.
(5) Cheng, W.; Co, E. W.; Kim, M. H.; Klein, R. R.; Le, D. T.; Lew, A.;
Nuss, J. M.; Xu, W.; Bajjalieh, W. WO 2005020921A2, 2005.
(6) (a) Gates, P. S. WO 9211763, 1992. (b) Goto, T.; Ito, S.;
Minegishi, N.; Yamaoka, T.; Ueno, C.; Moriya, K.; Maurer, F.;
Watanabe, R. EP0771797A1, 1997.
(7) Lee, C.-S.; Balazitov, R.; Caso, L.; Davis, T. W.; Du, W.; Liu, R.;
Moon, Y.-c.; Paget, S. D.; Ren, H.; Sydorenko, N.; Wilde, R. G. WO
2014081906A2, 2014.
(8) Murphy, E. A.; Cheresh, D. A.; Arnord, L. D. WO 2011097594A2,
2011.
In this study, we have discovered a novel synthetic in-
termediate 1 for the rapid synthesis of 4,6-disubstituted 2-
thiomethylpyrimidines which accepts a broad range of nuc-
leophiles under microwave irradiation. Next to the wide
scope of nucleophilic additions, precursor 1 is accessible via
the same route in excellent yields and short time, therefore
enabling one-pot generation of this ditetrazole intermedi-
ate and subsequent coupling of nucleophiles. A further ad-
vantage of our protocol is that the reactions can be carried
out without the need of highly demanding experimental
setups (no inert gas, no reactive reagents, no catalysts) in
automated systems, thus making it an ideal candidate for
chemical library synthesis of biologically relevant scaffolds.
As the 2-position of the pyrimidines synthesized is substi-
tuted with thiomethyl moiety, all of the herein displayed
compounds can be easily further modified towards the sul-
fone by simple oxidation using established general methods
(i.e., oxone,23, MCPBA,24 or hydrogen peroxide25). In a subse-
quent reaction these 2-methylsulfones might then be react-
ed with various nucleophiles (i.e., amino,26 thio,27 and hy-
droxyl28 derivatives) allowing access to an even broader
chemical diversity.29
(9) (a) Tong, Y.; Penning, T. D.; Florjancic, A. S.; Miyashiro, J.;
Woods, K. W. US 020120220572A1, 2012. (b) Trani, G.; Barker, J.
J.; Bromidge, S. M.; Brookfield, F. A.; Burch, J. D.; Chen, Y.;
Eigenbrot, C.; Heifetz, A.; Ismaili, M.; Hicham, A.; Johnson, A.;
Krülle, T. M.; MacKinnon, C. H.; Maghames, R.; McEwan, P. A.;
Montalbetti, C. A. G. N.; Ortwine, D. F.; Pérez-Fuertes, Y.; Vaidya,
D. G.; Wang, X.; Zarrin, A. A.; Pei, Z. Bioorg. Med. Chem. Lett.
2014, 24, 5818.
(10) Seganish, W. M.; Brumfield, S. N.; Lim, J.; Matasi, J. J.; McElroy,
W. T.; Tulshian, D. B.; Lavey, B. J.; Altman, M. D.; Gibeau, C. R.;
Lampe, J. W.; Methot, J.; Zhu, L. WO 2013066729A1, 2013.
(11) Nagata, T.; Suzuki, T.; Yoshimura, A.; Tadano, N.; Toshiyuki, M.;
Satoh, H.; Saitoh, K.; Ohta, S. US 20110152519A1, 2011.
(12) Rose, F. L.; Tuey, G. A. P. J. Chem. Soc. 1946, 81.
(13) Walker, S. R.; Williams, R. T. Xenobiotica 1972, 2, 69.
(14) Mohite, P. B.; Pandhare, R. B.; Khanage, S. G. Biointerface Res.
Appl. Chem. 2012, 2, 258.
(15) Fujii, S.; Kobayashi, T.; Nakatsu, A.; Miyazawa, H.; Kagechika, H.
Chem. Pharm. Bull. 2014, 62, 700.
(16) McCluskey, A.; Keller, P. A.; Morgan, J.; Garner, J. Org. Biomol.
Chem. 2003, 1, 3353.
(17) Packiarajan, M. WO 2004034967A2, 2004.
(18) Thomann, A.; Börger, C.; Empting, M.; Hartmann, R. W. Synlett
2014, 25, 935.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2606–2610