Chemistry - An Asian Journal
10.1002/asia.201700897
COMMUNICATION
extracted efficiently and isolated from aqueous CsF and TBAF by
(
2 4 8
(Rf6(CH ) ) C4P) exclusively as droplets.
Droplets
Acknowledgements
We thank Department of Science and Technology (DST), India
4a + TBAF
(
SB/FT/CS-046/2012) for financial support; S. Maji thanks IIT
Ropar for Fellowship.
Keywords: perfluoroalkyl • calix[4]pyrrole • fluoride ion• anion
4a
recognition • Hofmeister bias
[
1]
Anion Receptor Chemistry (Eds.: J. L. Sessler, P. A. Gale, W.-S. Cho),
Royal Society of Chemistry, Cambridge, 2006.
1
-
[2] R. Custelcean, B. A. Moyer, Eur. J. Inorg. Chem. 2007, 10, 1321−1340.
Figure 3. Comparative H NMR in THF-d
8
of host 4a, 4a-F complex
[
3]
a) P. A. Gale, N. Busschaert, Cally J. E. Haynes, L. E. Karagiannidis, I.
L. Kirby, Chem. Soc. Rev. 2014,43, 205-241; b) J. Caia, J. L. Sessler,
Chem. Soc. Rev. 2014,43, 6198-6213; c) V. Amendola, L.i Fabbrizzi, L.
Mosca, Chem. Soc. Rev. 2010,39, 3889-3915; d) Ai-F. Li, Jin-H. Wang,
F. Wang, Yun-B. Jiang, Chem. Soc. Rev. 2010, 39, 3729-3745.
and extracted fluoride (droplets) by 4a from water
–
In order to understand the comparative binding affinity of F and
–
Cl with the host, equimolar quantities (4.50 equiv.) of both anions
[4]
a) S. K. Kim, J. L. Sessler, Acc. Chem. Res. 2014, 47, 2525– 2536; b) D.
S. Kim, J. L. Sessler, Chem. Soc. Rev. 2015, 44, 532-546; c) P. A. Gale,
Acc. Chem. Res. 2011, 44, 216-226; d) Q. He, Z. Zhang, J.
T. Brewster, V. M. Lynch, S. K. Kim, J. L. Sessler, J. Am. Chem. Soc.
3
were added to CDCl solution of 4a and NMR was taken. The
pyrrole NH peak appears at 12.33-12.43 ppm and the β-CH peaks
was shifted to higher fields and appears at 5.52 ppm, but no peak
2
016, 138, 9779-9782; e) M. Ciardi, A. Galán, P. Ballester, J. Am. Chem.
corresponding to 11.18 ppm was observed (Figure S25, SI). This
–
Soc. 2015, 137, 2047-2055; f) S. K. Kim, V. M. Lynch, J. L. Sessler, Org.
Lett. 2014, 16, 6128-6131.
clearly indicates the formation of ((Rf6(CH
2
)
4
)
8
)calix-F complex
rather than chloride bound complex. To get further insight, both
anions were added sequentially in different equivalence. Initially
[
5]
a) T. Guinovart, D. H. Alonso, L. Adriaenssens, P. Blondeau, M. M.
Belmonte, F. X. Rius, F. J. Andrade, P. Ballester, Angew.Chem. Int. Ed.
2016, 55, 2435-2440; Angew. Chem. 2016, 128, 2481–2486, b) T.
Guinovart, D. H. Alonso, L. Adriaenssens, P. Blondeau, F. X. Rius, P.
Ballester, F. J. Andrade, Biosensors and Bioelectronics. 2017, 87, 587-
addition of 1.0 equiv. of TMACl (solid) to host showed a peak at
–
1
1.18 ppm corresponding to Cl ions bound with pyrrole NH
protons. On successive addition of TMAF (0.5 equiv on 1st
addition and 1.0 equiv. on 2nd addition), the NH peak
5
92.
–
[6]
a) T. G. Levitskaia, M. Marquez, J. L. Sessler, J. A. Shriver, T. Vercouter,
B. A. Moyer, Chem. Commun., 2003, 2248-2249; b) J. L. Sessler, D. E.
Gross, W. S. Cho, V. M. Lynch, F. P. Schmidtchen, G. W. Bates, M. E.
Light, P. A. Gale, J. Am. Chem. Soc. 2006, 128, 12281-12288.
corresponding to bind Cl decreased and a new peak appeared
–
at 12.33-12.43 ppm gradually. On further addition of TMAF, Cl
–
from cavity was completely replaced by F (Figure S26, SI).
However, further addition of excess TMACl to the resulting
[
7]
a) S. K. Kim, J. L. Sessler, D. E. Gross, C.-H. Lee, J. S. Kim, V. M. Lynch,
L. H. Delmau, B. P. Hay, J. Am. Chem. Soc. 2010, 132, 5827–5836 b) G.
Cafeo; F. H. Kohnke, L. Valenti, A. J. P. White, Chem. Eur. J. 2008, 14,
11593-11600; c) B. Verdejo, G. Gil-Ramírez, P. Ballester, J. Am. Chem.
Soc. 2009, 131, 3178-3179; d) R. Samanta, B. S. Kumar, P. K. Panda,
Org. Lett. 2015, 17, 4140-4143; e) S. K. Kim, V. M. Lynch, N. J.
Young∥, B. P. Hay, C.-H. Lee, J. S. Kim, B. A. Moyer, J. L. Sessler, J.
Am. Chem. Soc., 2012, 134, 20837–20843; f) S. K. Kim, J. Lee, N. J.
Williams, V. M. Lynch, B. P. Hay, B. A. Moyer, J. L. Sessler, J. Am. Chem.
Soc. 2014, 136, 15079 − 15085, g) D. H. Alonso, S. Zankowski, L.
Adriaenssensa, P. Ballester, Org. Biomlo. Chem. 2015, 13, 1022-1029.
a) A. Jana, M. Ishida, J. S. Park, S. Bähring, J. O. Jeppesen, J. L. Sessler,
Chem. Rev. 2017, 117, 2641–2710; b) S. K. Kim, D. E. Gross, D.-G.
Cho, V. M. Lynch, J. L. Sessler, J. Org. Chem. 2011, 76, 1005–1012; c)
I. Saha, K. H. Park, M. Han, S. K. Kim, V. M. Lynch, J. L. Sessler, C.-H.
Lee, Org. Lett. 2014, 16, 5414–5417; d) Y. Yeon, S. Leem, C. Wagen, V.
M. Lynch, S. K. Kim, J. L. Sessler, Org. Lett. 2016, 18, 4396–4399.
a) N. Busschaert, C. Caltagirone, W. Van Rossom and P. A. Gale, Chem.
Rev., 2015, 115, 8038–8155; b) Y. Zhou, J. F. Zhang, J. Yoon, Chem.
Rev., 2014, 114, 5511-5571; c) R. P. Schwarzenbach, B. I. Escher, K.
Fenner, T. B. Hofstetter, C. A. Johnson, U. von Gunten and B. Wehrli,
Science 2006, 313, 1072; d) E. Newbrun J. Public Health Dent. 2010, 70,
–
solution showed no change in NMR which indicates that F ion
–
–
can replace bound Cl ion from host whereas Cl is not able to
–
remove bound F anion. Therefore perfluorohexyl calix[4]pyrrole
is a better fluoride anion receptor than chloride. Fluoride anion
binding capability of the perfluorocalix[4]pyrrole receptor was also
1
9
confirmed from F NMR. Competitive anion binding studies were
also done with TMABr, TBAI, TMANO and TBAHSO but the
3
4
corresponding anions of these salt did not show any binding with
host perfluorohexyl calix[4]pyrrole.
In conclusion we have synthesized terminal double bond
substituted meso-octaalkenyl calix[4]pyrrole and dialkenyl
dipyrromethane as common useful precursors in good yield for
further functionalization for designing different calix[4]pyrrole with
desired functionality. The terminal double bonds were easily
functionalized with perfluoroalkyl chains and phosphine and they
can be further extended to borane, hydroxyl functionalization and
polymerization for different applications. The dipyrromethane
derivative is an important precursor for the synthesis of various
unsymmetrical calix pyrroles. Highly hydrophobic perfluoroalkyl
[8]
[
[
9]
–
–
2
27–233;.
substituted calix[4]pyrrole recognizes hydrated F and Cl anion
from solid as well as from aqueous solution overcoming
Hofmeister bias with colorimetric detection. Fluoride ion was
10] a) M. Cametti, K. Rissanen, Chem. Soc. Rev. 2013, 42, 2016-2038; b) P.
Das, A. K. Mandal, M. K. Kesharwani, E. Suresh, B. Ganguly, A. Das,
Chem. Commun. 2011, 47, 7398-7400 and references therein; c) G. W.
This article is protected by copyright. All rights reserved.