§ Crystallographic measurements were made at 220 K using a Stoe IPDS
˚
diffractometer (Mo-Ka, l = 0.71073 A).
Crystal data: for [Zn(H O) (L)](NO ) 1: C H N O10Zn, M = 393.59,
3 2 6 12 6
2
4
¯
˚
triclinic, space group P 1, a = 6.3661(7), b = 7.5923(9), c = 8.0357(9) A, a =
3
˚
1
03.58(1), b = 103.12(1), c = 109.69(1)u, V = 334.98(7) A , Z = 1, m(Mo-
21
23
Ka) = 1.904 mm , Dcalc = 1.951 g cm , 1771 unique reflections, R1 =
.025, wR2 = 0.067.
For [Cu(H O) (L)
monoclinic, space group Cc, a = 13.1173(9), b = 13.2215(9), c = 12.0518(8)
0
2
2
2 3 2 2
](NO ) ?2H O 2: C12H16CuN10O10, M = 523.89,
3
21
˚
˚
A, b = 113.404(2)u, V = 1918.2(2) A , Z = 4, m(Mo-Ka) = 1.220 mm
,
23
D
calc = 1.814 g cm , 3769 unique reflections, R1 = 0.041, wR2 = 0.112.
For [Cu(H O) (L) ](ClO ?4H O 3: C12 20Cl CuN 14, M = 634.80,
2
2
2
4
)
2
2
H
2
8
O
¯
˚
triclinic, space group P 1, a = 7.3893(8), b = 9.0008(9), c = 9.0474(9) A, a =
3
˚
9
2.65(1), b = 107.18(1), c = 95.60(1)u, V = 570.4(1) A , Z = 1, m(Mo-Ka) =
21
23
.280 mm , Dcalc = 1.848 g cm , 2691 unique reflections, R1 = 0.028,
1
wR2 = 0.078.
For [Cu(OH)(L)](H NSO
2
3
)?H
2 6 9 5 5
O 4: C H CuN O S, M = 326.78,
monoclinic, space group P2 /c, a = 6.7875(7), b = 10.5615(9), c =
1
3
˚
˚
1
2
4.212(1) A, b = 97.57(1)u, V = 1009.9(2) A , Z = 4, m(Mo-Ka) =
21 23
.395 mm , Dcalc = 2.149 g cm , 2365 unique reflections, R1 = 0.036,
wR2 = 0.096.
For [Ag(H
orthorhombic, space group P2
2
O)(L)](CH
3
SO
3
)?H
2
O 5: C
7 4 5
H11AgN O S, M = 371.13,
1 1 1
2 2 , a = 7.4389(5), b = 10.572(1), c =
3
21
˚ ˚
14.777(1) A, V = 1162.2(2) A , Z = 4, m(Mo-Ka) = 1.934 mm , Dcalc =
23
.121 cm , 2762 unique reflections, R1 = 0.020, wR2 = 0.042.
CCDC 619868–619871 and 622647. For crystallographic data in CIF or
other electronic format see DOI: 10.1039/b612660j
Fig. 3 Modes of the anion–p interactions in the structures of 4 (a,
2
2
2
2
H NSO
3 3 3
) and 5 (b, CH SO ): Accessibility of the lone pair influences
double p,p-binding of sulfamate.
Table 1 Geometry of the anion–p interaction in structures 4 and 5
1
C. Janiak, Dalton Trans., 2003, 2781; B. Moulton and M. J. Zaworotko,
Chem. Rev., 2001, 101, 1629.
…
…
…
X plane
˚
distance/A
Anion
involved
X
C(N)
X
distance/A
centroid
˚
a
Site
range/u
Q /u
2 G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural
Chemistry and Biology. New York,Oxford University Press Inc., 1999;
P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 487;
E. A. Meyer, R. K. Castellano and F. Diederich, Angew. Chem., Int.
Ed., 2003, 42, 1210.
3 P. de Hoog, P. Gamez, I. Mutikainen, U. Turpinen and J. Reedijk,
Angew. Chem., Int. Ed., 2004, 43, 5815; J. P. Gallivan and
D. A. Dougherty, Org. Lett., 1999, 1, 103; S. Scheiner, T. Kar and
J. Pattanayak, J. Am. Chem. Soc., 2002, 124, 13257; C. Garau,
D. Qui n˜ onero, A. Frontera, P. Ballester, A. Costa and P. M. Dey a` , New
J. Chem., 2003, 27, 211; S.-i. Kawahara, S. Tsuzuki and T. Uchimaru,
Chem.–Eur. J., 2005, 11, 4458.
2
NSO
3
H
H
a
2
O
N
O
C
3.26–3.60
3.09–3.64
3.09–3.65
3.89–4.49
3.140(2)
3.101(2)
3.093(2)
3.971(3)
3.109(3)
3.013(3)
3.011(2)
3.861(3)
81.9
76.3
76.8
76.5
2
3
CSO
3
…
Angle of the X p axis to the plane of the aromatic cycle.
little precedent in the literature; in particular it was involved
as a stabilizing factor for sugar–nucleobase intramolecular
13
interactions.
4
Ya. S. Rosokha, S. V. Lindeman, S. V. Rosokha and J. K. Kochi,
Angew. Chem., Int. Ed., 2004, 43, 4650; S. Demeshko, S. Dechert and
F. Meyer, J. Am. Chem. Soc., 2004, 126, 4508; A. Frontera,
F. Saczewski, M. Gdaniec, E. Dziemidowicz-Borys, A. Kurland,
P. M. Deya, D. Qui n˜ onero andC. Garau, Chem.–Eur. J., 2005, 11, 6560.
O. B. Berryman, F. Hof, M. J. Hynes and D. W. Johnson, Chem.
Commun., 2006, 506.
T. Steiner, Biophys. Chem., 2002, 95, 195; M. Egli, in Neutron
macromolecular crystallography at the spallation neutron source,
Workshop report, Argonne National Laboratory, Agronne, IL, USA,
In conclusion, the ability of the pyridazine compounds for
anion–p interactions provides an attractive structural prototype
and a unique p-bifunctional building block for novel polymeric
and molecular anion receptors. The system reported herein is
important for solid-state modelling of 4 + 1 cycloaddition
reactions, similar to those that occur between tetrazines and
5
6
1
4
isocyanides. Our results demonstrate also a useful methodology
for annelation of pyridazine cycles and provide the easiest chemical
2003, p. 24.
15
access to the pyridazino[4,5-d]pyridazine frame.
7 M. Mascal, Angew. Chem., Int. Ed., 2006, 45, 2890; M. Mascal,
A. Armstrong and M. D. Bartberger, J. Am. Chem. Soc., 2002, 124,
The authors acknowledge support from Deutsche Forschungs-
gemeinschaft, grant UKR 17/1/06 (HK and KVD).
6274; C. Garau, D. Qui n˜ onero, A. Frontera, A. Costa, P. Ballester and
P. M. Dey a` , Chem. Phys. Lett., 2003, 370, 7.
8
9
B. L. Schottel, H. T. Chifotides, M. Shatruk, A. Chouai, L. M. Perez,
J. Bacsa and K. R. Dunbar, J. Am. Chem. Soc., 2006, 128, 5895.
N. Haider, Tetrahedron, 1991, 47, 3959; N. Haider, Acta Chim. Slov.,
1994, 41, 205.
Notes and references
{
Pyridazino[4,5-d]pyridazine. A solution of 5.83 g (71 mmol) 1,2,4,5-
tetrazine and 15.30 g (66 mmol) acetylenedialdehyde tetraethyl acetal in
0 mL of dry dioxane was stirred at 90 uC for 20 h and then evaporated
in vacuo. The dark residue was dissolved in 100 mL of 4% HCl and stirred
at 60 uC for 30 min, after which 10 mL of N ?H O was added and
10 B. L. Schottel, J. Basca and K. R. Dunbar, Chem. Commun., 2005, 46.
11 P. U. Maheswari, B. Modec, A. Pevec, B. Kozlev cˇ ar, C. Massera,
P. Gamez and J. Reedijk, Inorg. Chem., 2006, 45, 6637.
12 B. Rather, B. Moulton, R. D. B. Walsh and M. J. Zaworotko, Chem.
Commun., 2002, 694; L. Carlucci, N. Cozzi, G. Ciani, M. Moret,
D. M. Proserpio and S. Rizzato, Chem. Commun., 2002, 1354; I. Boldog,
E. B. Rusanov, A. N. Chernega, J. Sieler and K. V. Domasevitch,
J. Chem. Soc., Dalton Trans., 2001, 893.
13 S. Sarkhel, A. Rich and M. Egli, J. Am. Chem. Soc., 2003, 125, 8998;
I. Berger and M. Egli, Chem.–Eur. J., 1997, 3, 1400.
14 P. Imming, R. Mohr, E. M u¨ ller, W. Overheu and G. Seitz, Angew.
Chem., 1982, 94, 291.
8
2
H
4
2
stirring was continued for an additional hour. The black solution was
extracted with 30 6 200 mL chloroform and the extracts were evaporated
to dryness. The solid was sublimed (180 uC, 0.2 Torr) and then crystallized
from methanol yielding pure product (4.54 g, 52%) as faintly yellow
needles.
Coordination compounds were prepared from aqueous solutions of the
components. In a typical synthesis, a solution of 0.031 g (0.1 mmol) of
Cu(H
was slowly evaporated over a period of 7–8 d yielding green prisms of
Cu(OH)(L)](H NSO )?H O 4 (0.023 g, 70%).
2 3 2 2
NSO ) ?3H O and 0.016 g (0.12 mmol) of the ligand in 3 mL water
15 G. Adembri, F. De Sio, R. Nesi and M. Scotton, Chem. Commun., 1967,
1006.
[
2
3
2
4
810 | Chem. Commun., 2006, 4808–4810
This journal is ß The Royal Society of Chemistry 2006