3124
C. Harcken et al.
LETTER
Data for Alkynes.
completion in high yield at 65 °C within a few hours. The
cyclization products have been precipitated from the reac-
tion mixture and the products have not required purifica-
tion by chromatography. Furthermore, we have shown
that various functional groups are tolerated.
Compound 7: prepared from (4-iodopyridin-3-yl)carbamic
acid tert-butyl ester.23 1H NMR (400 MHz, CDCl3): d = 9.35
(s, 1 H), 8.20 (d, J = 5.06 Hz, 1 H), 7.19 (d, J = 5.06 Hz, 1
H), 7.06 (s, 1 H), 2.51 (t, J = 7.07 Hz, 2 H), 1.72 (qt, J = 7.07
Hz, J = 7.33 Hz, 2 H), 1.55 (s, 9 H), 1.09 (t, J = 7.33 Hz, 3
H).
This methodology represents the most general method for
the synthesis of azaindoles and diazaindoles described in
the literature to date. We believe that this methodology
will find many applications in the synthesis of compounds
containing this class of heterocycles.
Compound 9: 1H NMR data are in accordance with data
reported in the literature.7
Compound 11: prepared from (2-bromopyridin-3-
yl)carbamic acid tert-butyl ester.22 1H NMR (400 MHz,
CDCl3): d = 8.42 (d, J = 9.08 Hz, 1 H), 8.19 (dd J = 1.39 Hz,
J = 4.67 Hz, 1 H), 7.18 (dd, J = 4.67 Hz, J = 8.57 Hz, 1 H),
2.53 (t, J = 7.08 Hz, 2 H), 1.74 (qt, J = 7.33 Hz, J = 7.08 Hz,
2 H), 1.54 (s, 9 H), 1.10 (t, J = 7.33 Hz, 3 H).
References
Compound 13: prepared from (3-iodopyridin-2-yl)carbamic
acid tert-butyl ester.24 1H NMR (400 MHz, CDCl3): d = 8.36
(dd, J = 5.05 Hz, J = 1.77 Hz, 1 H), 7.60 (dd, J = 7.58 Hz,
1.77 Hz, 1 H), 7.57 (s, 1 H), 6.90 (dd, J = 7.58 Hz, J = 5.05
Hz, 1 H), 2.49 (t, J = 7.07 Hz, 2 H), 1.69 (qt, J = 7.33 Hz,
J = 7.07 Hz, 2 H), 1.54 (s, 9 H), 1.09 (t, J = 7.33 Hz, 3 H).
Compound 15: 1H NMR (400 MHz, CDCl3): d = 9.74 (br s,
1 H), 9.29 (br s, 1 H), 6.90 (s, 1 H), 2.99 (t, J = 7.58 Hz, 2
H), 1.69 (m, 11 H), 0.99 (t, J = 7.33 Hz, 3 H).
(1) Hands, D.; Sishop, B.; Cameron, M.; Edwards, J. S.;
Cottrell, I. F.; Wright, S. H. B. Synthesis 1996, 877.
(2) Modnikova, G. A.; Titkova, R. M.; Glushkov, R. G.;
Sokolova, A. S.; Silin, V. A.; Chernov, V. A. Pharm. Chem.
J. 1988, 22, 135.
(3) Kuzmich, D.; Mulrooney, C. Synthesis 2003, 1671.
(4) Ujjainwalla, F.; Warner, D. Tetrahedron Lett. 1998, 39,
5355.
(5) Song, J. J.; Tan, Z.; Gallou, F.; Xu, J.; Yee, N. K.;
Senanayake, C. H. J. Org. Chem. 2005, 70, 6512.
(6) Castro, C. E.; Stevens, R. D. J. Org. Chem. 1963, 28, 2163.
(7) Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers, J. B.
Tetrahedron Lett. 1998, 39, 5159.
(8) Mazéas, D.; Guillaumet, G.; Viaud, M.-C. Heterocycles
1999, 50, 1065.
(9) Kumar, V.; Dority, J. A.; Bacon, E. R.; Singh, B.; Lesher, G.
Y. J. Org. Chem. 1992, 57, 6995.
(10) Ames, D. E.; Bull, D. Tetrahedron 1982, 38, 383.
(11) Norman, M. H.; Chen, N.; Chen, Z.; Fotsch, C.; Hale, C.;
Han, N.; Hurt, R.; Jenkins, T.; Kincaid, J.; Liu, L.; Lu, Y.;
Moreno, O.; Santora, V. J.; Sonnenberg, J. D.; Karbon, W. J.
Med. Chem. 2000, 43, 4288.
Compound 17: 1H NMR (400 MHz, CDCl3): d = 8.97 (br s,
1 H), 7.92 (br s, 1 H), 6.74 (s, 1 H), 2.99 (t, J = 7.58 Hz, 2
H), 1.69 (qt, J = 7.58 Hz, J = 7.58 Hz, 2 H), 1.63 (s, 9 H),
1.01 (t, J = 7.58 Hz, 3 H).
Compound 19: 1H NMR (400 MHz, CDCl3): d = 9.41 (s, 1
H), 8.73 (s, 1 H), 6.96 (br s, 1 H), 2.49 (t, J = 7.08 Hz, 2 H),
1.66 (qt, J = 7.33 Hz, J = 7.08 Hz, 2 H), 1.48 (s, 9 H), 1.03
(t, J = 7.33 Hz, 3 H).
Compound 21: 1H NMR (400 MHz, CDCl3): d = 8.34 (br s,
1 H), 8.24 (br s, 1 H), 6.46 (br s, 1 H), 2.96 (t, J = 7.58 Hz, 2
H), 1.69 (qt, J = 7.58 Hz, J = 7.34 Hz, 2 H), 1.62 (s, 9 H),
0.99 (t, J = 7.34 Hz, 3 H).
Compound 23: 1H NMR (400 MHz, CDCl3): d = 9.32 (s, 1
H), 8.14 (d, J = 5.03 Hz, 1 H), 7.16 (d, J = 4.80 Hz, 1 H),
6.97 (s, 1 H), 4.53 (s, 2 H), 1.46 (s, 9 H).
(12) Sakamoto, T.; Kondo, Y.; Iwashita, S.; Yamanaka, H. Chem.
Pharm. Bull. 1987, 35, 1823.
(13) Brière, J.-F.; Dupas, G.; Quéguiner, G.; Bourguignon, J.
Heterocycles 2000, 52, 1371.
(14) Ames, D. E.; Brohi, M. I. J. Chem. Soc., Perkin Trans. 1
1980, 1384.
(15) Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.;
Knochel, P. Tetrahedron 2003, 59, 1571.
Compound 25: 1H NMR (400 MHz, CDCl3): d = 9.26 (br s,
1 H), 8.12 (d, J = 5.05 Hz, 1 H), 7.25 (s, 1 H), 7.11 (d,
J = 5.05 Hz, 1 H), 3.79 (t, J = 5.71 Hz, 2 H), 2.60 (t, J = 6.95
Hz, 2 H), 1.85 (tt, J = 6.95 Hz, J = 5.71 Hz, 2 H), 1.48 (s, 9
H).
Compound 27: 1H NMR (400 MHz, CDCl3): d = 9.28 (s, 1
H), 8.14 (d, J = 5.05 Hz, 1 H), 7.13 (d, J = 5.05 Hz, 1 H),
6.98 (s, 1 H), 3.41 (s, 1 H), 1.60 (s, 6 H), 1.46 (s, 9 H).
Compound 29: 1H NMR (400 MHz, CDCl3): d = 9.35 (s, 1
H), 8.21 (d, J = 5.05 Hz, 1 H), 7.25–7.52 (m, 6 H), 7.04 (br
s, 1 H), 1.49 (s, 9 H).
(16) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P.
Angew. Chem. Int. Ed. 2000, 39, 2488.
(17) Choi-Sledeski, Y. M.; Kearney, R.; Poli, G.; Pauls, H.;
Gardner, C.; Gong, D.; Becker, M.; Davis, R.; Spada, A.;
Liang, G.; Chu, V.; Brown, K.; Collussi, D.; Leadley, R. Jr.;
Rebello, S.; Moxey, P.; Morgan, S.; Bentley, R.; Kasiewski,
C.; Maignan, S.; Guilloteau, J.-P.; Mikol, V. J. Med. Chem.
2003, 46, 681.
(18) Kelly, T. A.; Patel, U. R. J. Org. Chem. 1995, 60, 1875.
(19) General Procedure for the Sonogashira Coupling.
To a solution of ortho-(Boc-amino)halogeno pyridine or
diazine (1 mmol) in anhyd DMF (1 mL) and Et3N (3 mL)
was added copper iodide (0.10 mmol), Pd(PPh3)2Cl2 (0.05
mmol) and the alkyne (1 mmol) under argon and the reaction
stirred at r.t. for 15 h. The reaction was diluted with EtOAc
(10 mL), washed with sat. aq NH4Cl solution (2 × 5 mL) and
the combined aqueous layers were extracted with EtOAc
(3 × 20 mL). The combined organic layers were washed with
brine (5 mL), dried over MgSO4 and concentrated. Column
chromatography (hexane–EtOAc) yielded ortho-(Boc-
amino)alkynyl pyridines or diazines in 37–99% yield.
Compound 31: 1H NMR (400 MHz, CDCl3): d = 8.85 (s, 1
H), 8.10 (d, J = 5.05 Hz, 1 H), 7.32 (d, J = 5.05 Hz, 1 H),
7.23 (d, J = 8.85 Hz, 2 H), 6.57 (s, J = 8.85 Hz, 2 H), 1.45 (s,
9 H).
Compound 33: 1H NMR (400 MHz, CDCl3): d = 9.41 (s, 1
H), 8.22 (d, J = 5.06 Hz, 1 H), 7.20 (d, J = 5.06 Hz, 1 H),
7.04 (s, 1 H), 4.86 (s, 1 H), 4.22 (d, J = 5.56 Hz, 2 H), 1.56
(s, 9 H), 1.48 (s, 9 H).
(20) Typical Procedure for the Cyclization.
To a solution of ortho-(Boc-amino)alkynyl pyridine or
diazine (1 mmol) in MeOH–H2O (5 mL, 3:1) was added
DBU (5 mmol) and the reaction heated to 65–85 °C for 1–14
h. Then, MeOH was removed under vacuum and the solution
cooled in an ice-water bath; H2O was added dropwise to
precipitate the azaindole or diazaindole. Compounds 16, 18,
28, and 30 did not solidify from aqueous solution. In these
cases the H2O–DBU mixture was decanted from the oil. The
Synlett 2005, No. 20, 3121–3125 © Thieme Stuttgart · New York