M. Sarma et al. / Inorganic Chemistry Communications 13 (2010) 1114–1117
1117
(cyclen)]2+/[Cu(cyclen)]+ couple and (ii) considerable shift of the
red-ox potential of the [Cu(cyclen)]2+/[Cu(cyclen)]+ couple (from
[5] S. Aoki, E. Kimura, Chem. Rev. 104 (2004) 769 and the references therein.
[6] K.L. Haas, K.J. Franz, Chem. Rev. 109 (2009) 4921 and the references therein.
[7] S. Mukhopadhyay, S.K. Mandal, S. Bhaduri, W.H. Armstrong, Chem. Rev. 104
(2004) 3981 and the references therein.
[8] J. Svoboda, B. König, Chem. Rev. 106 (2006) 5413 and the references therein.
[9] K. Binnemans, Chem. Rev. 109 (2009) 4283 and the references therein.
[10] R. Martínez-Máñez, F. Sancenón, Chem. Rev. 103 (2003) 4419 and the references
therein.
−0.75 V to −0.45 V vs Ag/AgCl), while the red-ox response
2−
corresponding to the POM cluster anion (W6O ) remains almost
19
constant. Previously reported electrochemical studies on Cu–cyclen
complexes have shown that voltammograms for the [Cu(cyclen)]2+
/
[Cu(cyclen)]+ couple were mostly irreversible [41–43]. Because of
some conformational change/change of geometry around copper ion
in the Cu–cyclen complex (e.g., from square planar to tetrahedral), the
cyclen cavity cannot bind and/or stabilize the Cu1+ oxidation state
[44–46]. It has been observed in some cases that solvent effects can
overcome this problem of irreversibility by its coordination to Cu1+
centre when the chemical processes associated with these structural
changes are fast enough on the electrochemical scale thereby showing
reversibility [46]. But in the case of compound 1, probable reason for
the reversible nature of the concerned couple in presence of a POM
anion in solution is not so clear to us.
In conclusion, we have shown, for the first time, a crystallographic
evidence for the co-existence of a transition metal aza-crown ether
complex with a polyoxoanion in compound [Cu(cyclen)(CH3CN)]
[W6O19] (1). We have demonstrated that the red-ox potential of the
couple [Cu(cyclen)]2+/[Cu(cyclen)]+ has been altered (as compared
to that of same couple in bare Cu–cyclen complex) in presence of an
isopolyanion. This study clearly suggests that the title complex is a
better oxidizing agent when it is supramolecularly associated with a
POM anion. Rigorous investigations on electrochemical and catalytic
behaviours of transition metal aza-crown ether complexes containing
POMs as the counteranions are in progress in our laboratory.
[11] A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T.
Rademacher, T.E. Rice, Chem. Rev. 97 (1997) 1515 and the references therein.
[12] P. Rajec, V. Švec, V. Mikulaj, R. Hanzel, J. Radioanal. Nucl. Chem. 229 (1998) 9.
[13] S.–R. Sheen, J.–S. Shih, Analyst 117 (1992) 1691.
[14] L.A. Fernando, M.L. Miles, L.H. Bowen, Anal. Chem. 52 (1980) 1115.
[15] M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, 1983.
[16] M.T. Pope, A. Müller, Polyoxometalate Chemistry, Kluwer, Dordrecht, 2001.
[17] D. Hagrman, P.J. Hagrman, J. Zubieta, Angew. Chem., Int. Ed. 38 (1999) 2638.
[18] Topical issue on polyoxometalates: C.L. Hill, Guest Ed. Chem. Rev. 98 (1998)
1–389 and the references therein.
[19] Y. Li, N. Hao, E. Wang, M. Yuan, C. Hu, N. Hu, H. Jia, Inorg. Chem. 42 (2003) 2729.
[20] W. You, E. Wang, Y. Xu, Y. Li, L. Xu, C. Hu, Inorg. Chem. 40 (2001) 5468.
[21] W.S. You, E. Wang, H. Zhang, L. Xu, Y.B. Wang, J. Mol. Struct. 554 (2000) 141.
[22] W.S. You, E. Wang, L. Xu, Z.M. Zhu, Y.P. Gu, J. Mol. Struct. 605 (2002) 41.
[23] W.S. You, E. Wang, Q.L. He, L. Xu, Y. Xing, H.Q. Jia, J. Mol. Struct. 524 (2000) 133.
[24] Y.G. Li, E. Wang, S.T. Wang, Y. Lu, C.W. Hu, N.H. Hu, H.Q. Jia, J. Mol. Struct. 607
(2001) 133.
[25] P.C.R. Soares-Santos, L.C. Silva, F.L. Sousa, H.I.S. Nogueira, J. Mol. Struct. 888
(2008) 99.
[26] C. Streb, T. McGlone, O. Brücher, D.-L. Long, L. Cronin, Chem. Eur. J. 14 (2008) 8861.
[27] Y. Zhao, Z. Shi, S. Ding, N. Bai, W. Liu, Y. Zou, G. Zhu, P. Zhang, Z. Mai, W. Pang,
Chem. Mater. 12 (2000) 2550.
[28] T. Akutagawa, D. Endo, F. Kudo, S.-I. Noro, S. Takeda, L. Cronin, T. Nakamura, Cryst.
Growth Des. 8 (2008) 812.
[29] A. Falber, B.P. Burton-Pye, I. Radivojevic, L. Todaro, R. Saleh, L.C. Francesconi, C.M.
Drain, Eur. J. Inorg. Chem. (2009) 2459 and the references therein.
[30] CSD version 5.30, November 2008 at University of Hyderabad.
[31] J.M. Wilson, F. Giordani, L.J. Farrugia, M.P. Barrett, D.J. Robins, A. Sutherland, Org.
Bimol. Chem. 5 (2007) 3651.
[32] G. Hervé, H. Bernard, N. Le Bris, J.-J. Yaouanc, H. Handel, L. Toupet, Tet. Lett. 39
(1998) 6861.
[33] D.P. Reed, G.R. Weisman, Org. Synth. 10 (2004) 667.
Acknowledgements
[34] T.J. Atkins, J.E. Richman, W.F. Oettle, Org. Synth. 6 (1998) 652.
[35] To a 10 ml (1:1 mixture of CH3CN and CH3OH) solution of cyclen (51.6 mg,
0.3 mmol) was added Cu(NO3)2 (69.8 mg, 0.3 mmol) and the reaction mixture
The authors thank the Department of Science and Technology
(DST) (Project No. SR/S1/IC-23/2007), India and Center For Nano-
technology (CFN) in the University of Hyderabad for financial support.
National single crystal XRD facility at University of Hyderabad by DST
is highly acknowledged. We thank Prof. S. Pal for permitting us and
Tulika Ghosh for helping us to record the cyclic voltammograms. MS
and TC thank UGC, New Delhi, India and CFN respectively for their
fellowships.
was stirred overnight at room temperature.
A solution of [Bu4N]2[W6O19]
(567 mg, 0.3 mmol) in CH3CN was prepared separately. These two solutions
were then charged onto two different arms of an U-tube setup (see Fig. 1) and
allowed to mix slowly through a G4 frit that joins two arms of the U-tube. Deep
blue needles of 1 were isolated after few days. IR (KBr, cm−1): 3250.35 (s, NH),
2949.43 (w, aliphatic CH), 2883.84 (w), 2310.93 (m, M–N≡C), 983.78 (s, W O),
808.25 (W–Ob–W). Anal. Calcd. For C10H23CuN5O19W6 (1683.97): C, 7.12; H, 1.37;
N, 4.16. Found: C, 7.21; H, 1.31; N, 4.32.
[36] Crystal data for 1: C10H23CuN5O19W6, M=1683.97, monoclinic, space group C2/c,
a=10.827(4)Å, b=17.180(6)Å, c=15.006(5)Å, β=94.008(6)°, U=2784.4(17)
Å3, Z=4, Dcalcd =4.017 gm cm−3 μ=25.517 mm−1
, , F(000)=2972, crystal
Appendix A. Supplementary material
size = 0.16 × 0.04 × 0.04 mm3, reflections collected/unique = 13206/2447
(Rint =0.0474), final R1/wR2=0.0372/0.0671, 195 parameters, highest diff.
Text and figures depicting spectroscopic studies (IR, UV–visible,
ESR) and elemental analysis, figures and tables related to the crystal
structure of 1. X-ray crystallographic data for 1 (CIF format) may be
depository number CCDC 771216. Supplementary data associated
with this article can be found, in the online version, at doi:10.1016/j.
inoche.2010.06.013.
peak/hole=+1.222/–0.978 e.Å−3
.
[37] M.C. Styka, R.C. Smierciak, E.L. Blinn, R.E. Desimone, J.V. Passariello, Inorg. Chem.
17 (1978) 82.
[38] V. Shivaiah, S.K. Das, Inorg. Chem. 44 (2005) 8846.
[39] J.-P. Costes, F. Dahan, G. Novitchi, V. Arion, S. Shova, J. Lipkowski, Eur. J. Inorg.
Chem. (2004) 1530.
[40] B.J. Hathaway, in: G. Wilkinson, R.D. Gillard, J.A. McCleverthy (Eds.), Comprehen-
sive Coordination Chemistry, vol. 5, Pergamon Press, Oxford, England, 1987,
p. 533.
[41] K.S. Woodin, et al., Eur. J. Inorg. Chem. (2005) 4829.
[42] S.El Ghachtouli, C. Cadiou, I. Déchamps-Olivier, F. Chuburu, M. Aplincourt, V.
Turcry, M. Le Baccon, H. Handel, Eur. J. Inorg. Chem. (2005) 2658.
[43] S.-Y. Kim, I.-S. Jung, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi, K. Kim, Angew.
Chem. Int. Ed. 40 (2001) 2119.
[44] A. Bencini, L. Fabbrizzi, A. Poggi, Inorg. Chem. 20 (1981) 2544.
[45] A. Buttafava, L. Fabbrizzi, A. Perotti, A. Poggi, G. Poli, B. Seghi, Inorg. Chem. 25
(1986) 1456.
References
[1] L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge
University Press, 1989.
[2] A.J.L. Villaraza, A. Bumb, M.W. Brechbiel, Chem. Rev. 110 (2010) 2921 and the
references therein.
[3] R.B. Lauffer, Chem. Rev. 87 (1987) 901 and the references therein.
[4] P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Chem. Rev. 99 (1999) 2293 and
the references therein.
[46] G. Gasser, M.J. Belousoff, M.A. Bond, L. Spiccia, Inorg. Chem. 46 (2007) 3876.