8950
3. (a) Ievina, A.; Muzart, J. Tetrahedron: Asymmetry 1995, 6, 147; (b) Muzart, J. J. Mol. Catal. 1991, 64, 381; (c)
Andrus, M. B.; Chen, X. Tetrahedron 1997, 53, 16229; (d) So¨dergren, M. J.; Andersson, P. G. Tetrahedron Lett.
1996, 37, 7577; (e) Zorrdervan, C.; Feringa, B. L. Tetrahedron: Asymmetry 1996, 7, 1895; (f) Kawasaki, K.;
Katsuki, T. Tetrahedron 1997, 53, 6337; (g) Andrus, M. B.; Argade, A. B.; Chen, X.; Pammnet, M. G.
Tetrahedron Lett. 1995, 36, 2945.
4. (a) Hutchings, G. J. J. Chem. Soc., Chem. Commun. 1999, 301; (b) Corma, A. Chem. Rev. 1995, 95, 559; Balogh,
M.; Laszlo, P. Organic Chemistry Using Clays; Springer Verlag: New York, 1993.
5. (a) Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 1996, 303; (b) Sheldon, R. A. Chem. Ind. (London) 1997, 12;
(c) Sheldon, R. A. J. Mol. Catal. A. 1996, 107, 75; Thomas, J. M.; Zamaraev, K. I. Angew. Chem., Int. Ed. Engl.
1994, 33, 308.
6. (a) Bigi, F.; Maggi, R.; Sartori, G.; Zambonin, E. J. Chem. Soc., Chem. Commun. 1998, 513; (b) Bigi, F.;
Frullanti, B.; Maggi, R.; Sartori, G.; Zambonin, E. J. Org. Chem. 1999, 64, 1004; (c) Ballabeni, M.; Ballini, R.;
Bigi, F.; Maggi, R.; Parrini, M.; Predieri, G.; Sartori, G. J. Org. Chem. 1999, 64, 1029.
7. Hayashibara, H.; Nishiyama, S.; Tsuruya, S.; Masai, M. J. Catal. 1995, 153, 254.
2
,
8. Na-HSZ-320 is an FAU zeolite with 5.6 SiO2/Al2O3 molar ratio, pore size 7.4 A and surface area 570 10 m /g.
2
,
9. H-ZSM-5 is an MFI zeolite with 28.2 SiO2/Al2O3 molar ratio, pore size 5.1–5.6 A and surface area 410 10 m /g
It was converted into Na-ZMS-5 according to Ref. 7.
10. Herron, N. Inorg. Chem. 1986, 25, 4714. The Cu content (% weight) in the Cu-Na-HSZ-320 and Cu-Na-ZSM-5
was 2.8 and 2.0, respectively (determined by AAS).
11. Sosnovsky, G. Angew. Chem., Int. Ed. Engl. 1964, 3, 269.
12. Sekar, G.; Datta Gupta, A.; Singh, V. K. Tetrahedron Lett. 1996, 37, 8435.
13. The general procedure for the preparation of allyl benzoates 3 is as follows: a mixture of the selected alkene 1
(30 mmol) and Cu-Na-HSZ-320 (0.1 g) was heated at 80°C and then tert-butylperbenzoate 2 (10 mmol, 1.9 g, 1.9
ml) was added dropwise over a 20 hour period. After an additional 2 hours, the mixture was cooled to rt, the
catalyst was removed by filtration, washed with methylene chloride (40 ml) and acetone (20 ml) and the crude was
treated with a saturated solution of NaHCO3 (2×25 ml) and water (2×25 ml). The organic phase was dried
(NaSO4), the excess olefin was recovered unchanged by distillation and the products purified by flash chromatog-
1
raphy using a mixture of hexane/ethyl acetate 95/5 as eluant. All products 3a–f were characterised (IR, H NMR
and MS) and their bps compared with reported literature bps. Physical data of 3d: pale yellow oil, bp
1
135–140°C/0.1 mmHg; H NMR (CDCl3, 300 MHz): l=1.5–1.3 (m, 6H, 3CH2), 5.4–5.8 (m, 4H, H-2, H-3, H-6
and H-7), 6.1–6.3 (m, 1H, H-1), 7.40 (t, 2H, J=7.6, H-3% and H-5%), 7.51 (tm, 1H, J=7.6, H-4%), 8.05 (dm, 2H,
J=7.6, H-2% and H-6%); IR (NaCl): 1717 cm−1; MS (CI): m/z 228 (M+, 3%), 105 (100), 77 (49); Anal. calcd for
C15H16O2: C, 78.9, H, 7.1; found: C, 79.1, H, 7.3. Physical data of 3e: pale yellow oil, bp 124–128°C/0.1 mmHg;
1H NMR (CDCl3, 300 MHz): l=0.87 (t, 3H, J=7.0, CH3), 1.1–1.9 (m, 12H, 6CH2), 5.20 (dt, 1H, J=10.5 and
1.2, H-1trans), 5.32 (dt, 1H, J=17.1 and 1.2, H-1cis), 5.49 (qm, 1H, J=6.4, H-3), 5.90 (ddd, 1H, J=17.1, 10.5 and
6.4, H-2), 7.44 (tm, 2H, J=7.5, H-3% and H-5%), 7.55 (tt, 1H, J=7.5 and 1.4, H-4%), 8.06 (dm, 2H, J=7.5, H-2%
and H-6%); IR (NaCl): 1718 cm−1; MS (CI): m/z 260 (M+, 3%), 105 (100), 77 (23); Anal. calcd for C17H24O2: C,
78.4, H, 9.3; found: C, 78.2, H, 9.2.
14. See for example: (a) Kochi, J. K. J. Am. Chem. Soc. 1961, 83, 3162; (b) Denney, D. Z.; Appelbaum, A.; Denney,
C. B. J. Am. Chem. Soc. 1962, 84, 4969; (c) Kochi, J. K. J. Am. Chem. Soc. 1962, 84, 774; (d) Walling, C.;
Zavitsas, A. A. J. Am. Chem. Soc. 1963, 85, 2084; (e) Rawlinson, J.; Sosnovsky, G. Synthesis 1972, 567.
15. Lempers, H. E. B.; Sheldon, R. A. J. Catal. 1998, 175, 62.
.