10.1002/chem.201801185
Chemistry - A European Journal
FULL PAPER
Aleksandrov, G. N. Vayssilov, R. Retoux, P. Boullay, J. P. Gilson, V.
Valtchev, S. Mintova, Nat. Mater. 2017, 16, 1010-1015.
a) R. Martínez-Franco, C. Paris, M. E. Martínez-Armero, C. Martínez, M.
Moliner, A. Corma, Chem. Sci. 2016, 7, 102-108; b) M. R. Díaz-Rey, C.
Paris, R. Martínez-Franco, M. Moliner, C. Martínez, A. Corma, ACS
Catal. 2017, 7, 6170-6178.
Bore model, regarding the materials as polar material and
choosing the relative pressure points between 0.4-0.6. FT-IR
spectra were recorded by using a Bruker IFS-66V/S. FT-IR
spectrometer employing the KBr disk method. Raman spectra of
zeolites was performed on a Renishaw inVia Raman microscope.
The yield of the catalytic product was analyzed by High-
performance liquid chromatography-mass spectrometry (HPLC)
with an external standard substance Agilent 1290-micrOTOF Q
II (LC Column: Agilent ZORBAX SB-C8, 1.8 µm, 2.1 mm x 50
mm; Flow rate: 0.1 ml/min; Eluent: Linear gradient elution water:
acetonitrile (7/2 to 3/8, v/v); Temperature: 30 oC; Run time: 3.
mins; Detector: Agilent ICF System, Spec: 190 nm~ 400 nm. X-
ray photoelectron spectroscopy (XPS) data were collected on a
Thermo ESCALAB 250 operated at 15 kW (mono chromatic Al-
Kα radiation, 1486.6 eV). Mass spectra were recorded in the
[8]
[9]
M. Khaleel, W. Q. Xu, D. A. Lesch, M. Tsapatsis, Chem. Mater. 2016,
28, 4204−4213.
[10] L. Tosheva, V. P. Valtchev, Chem. Mater. 2005, 17, 2494-2513.
[11] a) S. C. Larsen, J. Phys. Chem. C 2007, 111, 18464-18474; b) Y.
Wang, A. D. Price, F. Caruso, J. Mater. Chem. 2009, 19, 6451-6464; c)
X. Y. Yang, L. H. Chen, Y. Li, J. C. Rooke, C. Sanchez, B. L. Su, Chem.
Soc. Rev. 2017, 46, 481-558.
[12] a) K. H. Rhodes, S. A. Davis, F. Caruso, B. Zhang, S. Mann, Chem.
Mater. 2000, 12, 2832-2834; b) S. Mintova, T. Bein, Adv. Mater. 2001,
13, 1880-1883; c) Y. Wang, F. Caruso, Adv. Funct. Mater. 2004, 14,
1012-1018; d) W. Fan, M. A. Snyder, S. Kumar, P. S. Lee, W. C. Yoo,
A. V. McCormick, R. L. Penn, A. Stein, M. Tsapatsis, Nat. Mater. 2008,
7, 984-991; e) Y. Deng, C. Deng, D. Qi, C. Liu, J. Liu, X. Zhang, D.
Zhao, Adv. Mater. 2009, 21, 1377-1382; f) M. S. Shah, M. Tsapatsis, J.
I. Siepmann, Chem. Rev. 2017, 117, 9755-9803; g) M. Y. Jeon, D. Kim,
P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S.
Lee, K. Narasimharao, S. N. Basahel, S. A. Thabaiti, W. Q. Xu, H. J.
Cho, E. O. Fetisov, R. Thyagarajan, R. F. DeJaco, W. Fan, K. A.
Mkhoyan, J. I. Siepmann and M. Tsapatsis, Nature 2017, 543, 690–694.
[13] a) Y. Posada, J. Appl. Phys. 2009, 105, 126108; b) Y. Mu, N. Wang, Z.
Sun, J. Wang, J. Li, J. Yu, Chem. Sci. 2016, 7, 3564-3568
positive-ion mode on
a Bruker- Esquire HCT instrument
interfaced by an electrospray ionization source. 1H NMR spectra
was obtained with (CD3)2SO as the solvent on a Germany
Bruker DMX 300 MHz spectrometer.
Acknowledgements
This work was supported by the Young Thousand Talented
Program and the National Natural Science Foundation of China
(21671073 and 21621001), the “111” Project of the Minis-try of
Education of China (B17020) and Program for JLU Science and
Technology Innovative Research Team.
[14] a) S. Mintova, T. Bein, Microporous Mesoporous Mater. 2001, 50, 159-
166; b) B. Pejcic, P. Eadington, A. Ross, Environ. Sci. Technol. 2007,
41, 6333-6342; c) K. Sahner, G. Hagen, D. Schönauer, S. Reiß, R.
Moos, Solid State Ionics 2008, 179, 2416-2423; d) D. J. Wales, J.
Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, A.
D. Burrows, Chem. Soc. Rev. 2015, 44, 4290-4321; e) Z. P. Lai, G.
Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O.
Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Science 2003,
300, 456-460
Conflict of interest
[15] K. Namekawa, M. T. Schreiber, T. Aoyagi, M. Ebara, Biomater. Sci.
2014, 2, 674-679.
The authors declare no conflict of interest.
[16] S. Mintova, M. Jaber, V. Valtchev, Chem. Soc. Rev. 2015, 44, 7207-
7233.
Keywords: nanosized zeolites, hierarchical structure, in situ
crystallization strategy, zeolite colloidal suspensions and
cascade catalysis.
[17] a) A. Sachse, J. Garcia-Martinez, Chem. Mater. 2017, 29, 3827-3853;
b) M. Choi, H. S. Cho, R. Srivastava, C. Venkatesan, D. H. Choi, R.
Ryoo, Nat. Mater. 2006, 5, 718-723; c) M. Choi, K. Na, J. Kim, Y.
Sakamoto, O. Terasaki, R. Ryoo, Nature 2009, 461, 246-249; d) F. Liu,
T. Willhammar, L. Wang, L. Zhu, Q. Sun, X. Meng, W. Carrillo-Cabrera,
X. Zou, F. S.-Xiao, J. Am. Chem. Soc. 2012, 134, 4557-4560; e) J. Zhu,
Y. Zhu, L. Zhu, M. Rigutto, A. van der Made, C. Yang, S. Pan, L. Wang,
L. Zhu, Y. Jin, Q. Sun, Q. Wu, X. Meng, D. Zhang, Y. Han, J. Li, Y. Chu,
A. Zheng, S. Qiu, X. Zheng, F.-S. Xiao, J. Am. Chem. Soc. 2014, 136,
2503-2510; f) D. Xu, Y. Ma, Z. Jing, L. Han, B. Singh, J. Feng, X. Shen,
F. Cao, P. Oleynikov, H. Sun, O.Terasaki, S.Che, Nat. Commun. 2014,
5, 4262; g) X. Shen, W. Mao, Y. Ma, D. Xu, P. Wu, O. Terasaki, L. Han,
S. Che, Angew. Chem. Int. Ed. 2018, 57, 724-728.
[1]
a) Y. Li, J. Yu, Chem. Rev. 2014, 114, 7268-7316; b) W. J. Roth, P.
Nachtigall, R. E. Morris, J. Cejka, Chem. Rev. 2014, 114, 4807-4837; c)
J. Cejka, A. Corma, S. Zones, Zeolites and catalysis: synthesis,
reactions and applications, John Wiley & Sons, 2010.
[2]
[3]
a) F. Schüth, W. Schmidt, Adv. Mater. 2002, 14, 629-638; b) M. E.
Davis, Nature 2002, 417, 813-821; c) M. Hartmann, Angew. Chem. Int.
Ed. 2004, 43, 5880-5882.
a) J. C. Groen, J. A. Moulijn, J. Pérez-Ramírez, J. Mater. Chem. 2006,
16, 2121-2131; b) J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C.
H. Christensen, J. C. Groen, Chem. Soc. Rev. 2008, 37, 2530-2542; c)
X. Meng, F. Nawaz and F.-S. Xiao, Nano Today, 2009, 4, 292-301;d) W.
Schwieger, A. G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M.
Klumpp, A. Inayat, Chem. Soc. Rev. 2016, 45, 3353-3376.
[18] a) Y. Tao, H. Kanoh, K. Kaneko, J. Am. Chem. Soc. 2003, 125, 6044-
6045; b) W. C. Li, A. H. Lu, R. Palkovits, W. Schmidt, B. Spliethoff, F.
Schüth, J. Am. Chem. Soc. 2005, 127, 12595-12600; c) K. Zhu, K.
Egeblad, C. H. Christensen, Eur. J. Inorg. Chem. 2007, 25, 3955-3960;
d) M. Kustova, K. Egeblad, K. Zhu, C. H. Christensen, Chem. Mater.
2007, 19, 2915-2917.
[4]
[5]
[6]
[7]
S. Mintova, J. P. Gilson, V. Valtchev, Nanoscale 2013, 5, 6693-6703.
E. Koohsaryan, M. Anbia, Chin. J. Catal. 2016, 37, 447-467.
V. Valtchev, L. Tosheva, Chem. Rev. 2013, 113, 6734-6760.
[19] a) X. Y. Yang, G. Tian, L. H. Chen, Y. Li, J. C. Rooke, Y. X. Wei, Z. M.
Liu, Z. Deng, G. Van Tendeloo, B. L. Su, Chem. - Eur. J., 2011, 17,
14987-14995; b) K. Möller, B. Yilmaz, R. M. Jacubinas, U. Müller, T.
Bein, J. Am. Chem. Soc. 2011, 133, 5284-5295; c) L. H. Chen, X. Y. Li,
G. Tian, Y. Li, J. C. Rooke, G. S. Zhu, S. L. Qiu, X. Y. Yang, B. L. Su,
Angew. Chem. Int. Ed. 2011, 50, 11156-11161; d) B. Li, Z. Hu, B. Kong,
a) E. P. Ng, D. Chateigner, T. Bein, V. Valtchev, S. Mintova, Science
2012, 335, 70-73; b) H. Awala, J. P. Gilson, R. Retoux, P. Boullay, J. M.
Goupil, V. Valtchev, S. Mintova, Nat. Mater. 2015, 14, 447-451; c) J.
Grand, S. N. Talapaneni, A. Vicente, C. Fernandez, E. Dib, H. A.
This article is protected by copyright. All rights reserved.