H.-J. Drexler et al. / Journal of Organometallic Chemistry 621 (2001) 89–102
101
References
[13] (a) H. Brunner, W. Pieronczyk, Angew. Chem. 91 (1979) 655;
Angew. Chem. Int. Ed. Engl. 18 (1979) 620. (b) H. Brunner, W.
Pieronczyk, B. Schonhammer, K. Streng, I. Bernal, J. Korp,
Chem. Ber. 114 (1981) 1137. For problems encountered with
RENORHOS refer to [31b]. A hydroxy derivative of NORPHOS
is described in J. Ward, A. Bo¨rner, H.B. Kagan, Tetrahedron:
Asymm. 3 (1992) 849.
[14] (a) M.D. Fryzuk, B. Bosnich, J. Am. Chem. Soc. 99 (1977) 6262.
(b) M.D. Fryzuk, B. Bosnich, J. Am. Chem. Soc. 100 (1978)
5491.
[15] Since the partial reaction order for hydrogen, for the asymmetric
reaction as well as for the diolefin hydrogenation, is one [4c]
analogous results will also be obtained with other pressures.
[16] (a) M.J. Burk, J.E. Feaster, R.L. Harlow, Organometallics 9
(1990) 2653. (b) M.J. Burk, J. Am. Chem. Soc. 113 (1991) 8518.
(c) M.J. Burk, J.E. Feaster, W.A. Nugent, R.L. Harlow, J. Am.
Chem. Soc. 115 (1993) 10125. (d) M.J. Burk, S. Feng, M.F.
Gross, W. Tumas, J. Am. Chem. Soc. 117 (1995) 8277. (e) M.J.
Burk, M.F. Gross, J.P. Martinez, J. Am. Chem. Soc. 117 (1995)
9375. (f) M.J. Burk, Y.M. Wang, J.R. Lee, J. Am. Chem. Soc.
118 (1996) 5142. (g) M.J. Burk, M.F. Gross, T.G.P. Harper, C.S.
Kalberg, J.R. Lee, J.P. Martinez, Pure Appl. Chem. 68 (1996)
37. (h) M.J. Burk, J.G. Allen, W.F. Kiesmann, J. Am. Chem.
Soc. 120 (1998) 657. (i) J. Albrecht, U. Nagel, Angew. Chem. 108
(1996) 444; Angew. Chem. Int. Ed. Engl. 35 (1996) 407. (j) M.J.
Burk, C.S. Kalberg, A. Pizzano, J. Am. Chem. Soc. 120 (1998)
4345. (k) S.D. Debenham, J. Cossrow, E.J. Toone, J. Org.
Chem. 64 (1999) 9153. (l) M.J. Burk, K.M. Bedingfield, W.F.
Kiesman, J.G. Allen, Tetrahedron Lett. 40 (1999) 3093. (m) T.A.
Stammers, M.J. Burk, Tetrahedron Lett. 40 (1999) 3325. (n)
M.J. Burk, N.B. Johnson, J.R. Lee, Tetrahedron Lett. 40 (1999)
6685. (o) M.J. Burk, A. Pizzano, J.A. Martin, Organometallics
19 (2000) 250.
[17] (a) J. Holz, D. Heller, R. Stiirmer, A. Bo¨rner, Tetrahedron Lett.
40 (1999) 7059. (b) J. Holz, M. Quirmbach, U. Schmidt, D.
Heller, R. Stu¨rmer, A. Bo¨rner, J. Org. Chem. 63 (1998) 8031. (c)
W. Li, Z. Zhang, D. Xiao, X. Zhang, Tetrahedron Lett. 40
(1999) 6701. (d) Y.-Y. Yan, T.V. RajanBabu, J. Org. Chem. 65
(2000) 900. (e) W. Li, Z. Zhang, D. Xiao, X. Zhang, J. Org.
Chem. 65 (2000) 3489. (f) Y.-Y. Yan, T.V. RajanBabu, Org.
Lett. 2 (2000) 199.
[18] (a) A. Marinetti, J.P. Geneˆt, S. Jus, D. Blanc, V. Ratovelo-
manana-Vidal, Chem. Eur. J. 5 (1999) 1160. (b) A. Marinetti, F.
Labrue, J.P. Geneˆt, Synlett. 12 (1999) 1975. (c) A. Marinetti, S.
Jus, J.P. Geneˆt, Tetrahedron Lett. 40 (1999) 8365. (d) A.
Marinetti, S. Jus, J.P. Geneˆt, L. Ricard, Tetrahedron 56 (2000)
95.
[1] (a) J.M. Brown, Hydrogenation of functionalized carbon–car-
bon double bonds. In: E.N. Jacobsen, A. Pfaltz, H. Yamamoto
(Eds.), Comprehensive Asymmetric Catalysis, Springer, Berlin,
1999, Chapter 5.1, pp. 121–182. (b) U. Nagel, J. Albrecht,
Topics Catal. 5 (1998) 3. (c) M.J. Burk, F. Bienewald, Unnatural
a-amino acids, via asymmetric hydrogenation of enamides. In:
M. Beller, C. Bolm (Eds.), Transition Metals for Organic Syn-
thesis, vol. I, Wiley-VCH, Weinheim, 1998, Chapter 1.1.2, pp.
13–25. (d) H. Brunner, Hydrogenation. In: B. Cornils, W.A.
Herrmann (Eds.), Applied Homogeneous Catalysis with
Organometallic Compounds, vols. I and II, VCH, Weinheim,
1996, Chapter 2.2, pp. 201–219. (e) R. Noyori, Asymmetric
Catalysis in Organic Synthesis, Wiley, New York, 1994, Chapter
2, pp. 16–94. (f) P.A. Chaloner, M.E. Esteruelas, F. Joo, L.A.
Oro, Homogeneous Hydrogenation, Kluwer Academic Publish-
ers, Dordrecht, 1994. (g) H. Takaya, T. Ohta, R. Noyori,
Asymmetric hydrogenation. In: I. Ojima (Ed.), Catalytic Asym-
metric Synthesis, VCH, New York, 1993, Chapter 1, pp. 1–39.
[2] (a) F. Spindler, H.U. Blaser, Enantiomer 4 (1999) 557. (b) H.U.
Blaser, M. Studer, Appl. Catal. A 189 (1999) 191. (c) H.U.
Blaser, H.P. Buser, H.P. Jalett, B. Pugin, F. Spindler, Synlett. S1
(1999) 867. (d) H.U. Blaser, H.P. Buser, K. Coers, R. Hanreich,
H.P. Jalett, E. Jelsch, B. Pugin, H.D. Schneider, F. Spindler, A.
Wegmann, Chimia 53 (1999) 275. (e) H.-U. Blaser, F. Spindler,
Topics Catal. 4 (1997) 275.
[3] (a) J.R. Shapley, R.R. Schrock, J.A. Osborn, J. Am. Chem. Soc.
91 (1969) 2816. (b) R.R. Schrock, J.A. Osborn, J. Am. Chem.
Soc. 93 (1971) 3089. (c) R.R. Schrock, J.A. Osborn, J. Am.
Chem. Soc. 98 (1976) 2134. (d) R.R. Schrock, J.A. Osborn, J.
Am. Chem. Soc. 98 (1976) 4450.
[4] (a) D. Heller, K. Kortus, R. Selke, Liebigs Ann. (1995) 575. (b)
D. Heller, S. Borns, W. Baumann, R. Selke, Chem. Ber. 129
(1996) 85. (c) D. Heller, J. Holz, S. Borns, A. Spannenberg, R.
Kempe, U. Schmidt, A. Borner, Tetrahedron: Asymm. 8 (1997)
213.
[5] cis-Cyclo-octene (COE) and/or cyclo-octane (COA) as well as
norbornene (NBE) and/or norbornane (NBA) resulted as hydro-
genation product when COD or NBD was used.
[6] W. Baumann, S. Mansel, D. Heller, S. Borns, Magn. Reson.
Chem. 35 (1997) 701.
[7] Substrate inhibition as the cause for the observed induction
period can be ruled out. The induction periods also cannot be
caused by neglecting to add additional hydrogen. For a sub-
strate/precatalyst ratio of 100, there is an error of 2% expected
for the complete hydrogenation of the olefin to the saturated
product distributed over the entire gas uptake curve.
[19] F. Bienewald, L. Ricard, F. Mercier, F. Mathey, Tetrahedron:
Asymm. 10 (1999) 4701.
[8] (a) U. Nagel, T. Krink, Angew. Chem. 105 (1993) 1099; Angew.
Chem. Int. Ed. Engl. 32 (1993) 1052. (b) U. Nagel, A. Bublewitz,
Chem. Ber. 125 (1992) 1061. (c) U. Nagel, E. Kinzel, J. Andrade,
G. Prescher, Chem. Ber. 119 (1986) 3326.
[9] D. Heller, R. Thede, D. Haberland, J. Mol. Catal. A 115 (1996)
273.
[10] D.G. Blackmond, T. Rosner, T. Neugebauer, M. Reetz, Angew.
Chem. 111 (1999) 2333; Angew. Chem. Int. Ed. Engl. 38 (1999)
2196. 1:1 mixtures of the diastereomeric catalysts led to unex-
pectedly high enantioselectivities for the hydrogenation of
dimethyl itaconate. These are the results of the various induction
periods for the diastereomeric COD employed catalysts, so that
the end effect is that the hydrogenation at first runs via a
diastereomeric catalyst.
[20] Q. Jiang, Y. Jiang, D. Xiao, P. Cao, X. Zhang, Angew. Chem.
110 (1998) 1203; Angew. Chem. Int. Ed. Engl. 37 (1998) 1100.
[21] (a) F. Robin, F. Mercier, L. Ricard, F. Mathey, M. Spagnol,
Chem. Eur. J. 3 (1997) 1365. (b) F. Mathey, F. Mercier, F.
Robin, L. Ricard, J. Organomet. Chem. 577 (1998) 117.
[22] (a) T. Imamoto, J. Watanabe, Y. Wada, H. Masuda, H. Ya-
mada, H. Tsuruta, S. Matsukawa, K. Yamaguchi, J. Am. Chem.
Soc. 120 (1998) 1635. (b) T. Miura, T. Imamoto, Tetrahedron
Lett. 40 (1999) 4833.
[23] Very recently Gridnev and Imamoto have described product
complexes for similar systems. I.D. Gridnev, N. Higashi, K.
Asakura, T. Imamoto, J. Am. Chem. Soc. 122 (2000) 7183.
[24] The results obtained in the NMR tube correspond approxi-
mately to those determined in the standard hydrogenation vessel
at 15.0°C (total reaction time 45 min, 99.5% ee (5) 48% COD).
[25] T.E. Jordan, Vapor Pressure of Organic Compounds, Inter-
science, New York, 1954.
[11] M.E. Esterulas, J. Herrero, M. Martin, L.A. Oro, V.M. Real, J.
Organomet. Chem. 599 (2000) 178.
[12] (a) J.M. Brown, R.A. Chaloner, Tetrahedron Lett. 21 (1978)
1877. (b) J.M. Brown, P.A. Chaloner, J. Am. Chem. Soc. 102
[26] P.G.T. Fogg, W. Gerrard, Solubility of Gases in Liquids, Wiley,
Chichester, 1991.
(1980) 3040.
.