Chemistry - A European Journal
10.1002/chem.201903661
COMMUNICATION
2
was characterized by HR-MS experiments, which displayed an
m/z fragment of 377 characteristic of the lasalocid A polyether part
of the molecule (Fig. 2B); a possibly related species weighing 2Da
less and displaying an m/z 377 fragment was also observed (Fig.
[1]
2]
H. Ikeda H, T. Nonomiya, M. Usami, T. Ohta, S. Omura, Proc. Natl. Acad.
Sci. U. S. A. 1999, 96, 9509-9514.
a) K. J. Weissman, Method Enzymol. 2009, 459, 3-16; b) R. J. Cox, Org.
Biomol. Chem. 2007, 5, 2010-2026; c) Y. Shimizu, H. Ogata, S. Goto,
ChemBioChem 2017, 18, 50-65.
[
1
0S and 11S). Recent profiling of lasalocid A polyketide bio-
[3]
a) A. Hagen, S. Poust, T. de Rond, J. L. Fortman, L. Katz, C. J. Petzold,
J. D. Keassling, ACS Synth. Biol. 2016, 5, 21-27; b) K. J. Weissman, Nat.
Prod. Rep. 2016, 33, 203-230.
assembly with second-generation chain termination probes have
allowed us to off-load and capture several putative biosynthetic
intermediates, including partially and fully processed linear
nonaketides such as 8 (Fig. 2).[6c] To date only putative
undecaketides and dodecaketides featuring polyether moieties
had been identified; these would derive from the processing of
linear enzyme-bound polyketide chains by the tailoring enzymes
LasC (an epoxidase) and LasB (an epoxide hydrolase).[6] The
characterization of a putative nonaketide polyether species 10 in
the current study suggests that either the linear nonaketide 8 is
oxidised and processed by LasC and LasB following the chemical
off-loading of a fully processed PKS-bound octaketide from
module 9; or that the tailoring epoxidation-epoxide hydrolysis
cascade might take place on PKS-bound intermediate(s) earlier
than previously envisaged.[6a] Whereas recombinant LasC and
LasB are capable of processing substrate mimics of different
nature and complexity,[18] the nature of the true substrates for
these enzymes in vivo remains debatable. Nonetheless the
detection of 9 and other putative captured species in specific
microorganism fermentation and photolysis conditions exposes
how the timing and the flux of polyketide/polyether intermediate
formation is much susceptible to local and global perturbations
and still holds several intriguing aspects worthy of further
investigation and exploitation.
[
[
4]
5]
a) T. Robbins, Y.-C. Liu, D. E. Cane, C. Khosla, Curr. Opin. Struct. Biol.
2016, 41, 10-18; b) D. A.l Herbst, R. P., Jakob, F. Zähringer, T. Maier,
Nature 2016, 531, 533-537.
a) M. Tosin, L. Betancor, E. Stephens, W. M. A. Li, J. B. Spencer, P. F.
Leadlay, ChemBioChem 2010, 11, 539-546; b) M. Tosin, Y. Demydchuk,
J. S. Parascandolo, C. Blasco-Per, F. J. Leeper, P. F. Leadlay, Chem.
Commun. 2011, 47, 3460-3462.
[
[
6]
7]
a) M. Tosin, L. Smith, P. F. Leadlay, Angew. Chem. Int. Ed. 2011, 50,
11930-11933; b) E. Riva, I. Wilkening, S. Gazzola, W. M. A. Li, L. Smith,
P. F. Leadlay, M. Tosin, Angew. Chem. Int. Ed. 2014, 53, 11944-11949;
c) I. Wilkening, S. Gazzola, E. Riva, J. S. Parascandolo, L. Song, M.
Tosin, Chem. Commun. 2016, 52, 10392-10395.
a) J. S. Parascandolo, J. Havemann, H. K. Potter, F. Huang, E. Riva, J.
Connolly, I. Wilkening, L. Song, P. F. Leadlay, M. Tosin, Angew. Chem.
Int. Ed. 2016, 55, 3463-3467; b) H. Kage, E. Riva, J. S. Parascandolo,
M. F. Kreutzer, M. Tosin, M. Nett, Org. Biomol. Chem. 2015, 13, 11414-
1
1417; c) J. Havemann, M. E. Yurkovich, R. Jenkins, S. Harringer, W.
Tao, S. Wen, Y. Sun, P. F. Leadlay, M. Tosin, Chem. Commun. 2017,
3, 1912-1915; d) M. E. Yurkovich, R. Jenkins, Y. Sun, M. Tosin, P. F.
5
Leadlay, Chem. Commun. 2017, 53, 2182-2185.
Y. T. C. Ho, D. J. Leng, F. Ghiringhelli, I. Wilkening, D. P. Bushell, O.
Kostner, E. Riva, J. Havemann, D. Passarella, M. Tosin, Chem. Commun.
[
8]
2017, 53, 7088-7091.
[9]
a) P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V.
Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119-191; b) N.
Ankenbruck, T. Courtney, Y. Naro, A. Deiters, Angew. Chem. Int. Ed.
2017, 10.1002/anie.201700171.
In summary we have here obtain novel insights on lasalocid
A polyketide assembly utilising a novel light-activatable tool in vivo.
Further investigations into the modus operandi of 4 and the
development of other light-controlled tools for biosynthetic studies
[
[
10] G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2006, 45, 4900-4921.
11] B. D. Yestrepsky, C. A. Kretz, Y. Xu, A. Holmes, H. Sun, D.Ginsburg, S.
D. Larsena, Bioorg. Med. Chem. Lett. 2014, 15, 1538-1544.
[12] a) G. C. R. Ellis-Davies, Nat. Methods 2007, 4, 619-628; b) J. Luo, J.
Torres-Kolbus, J. Liu, A. Deiters, ChemBioChem 2017, 18, 1442-1447;
c) E. A. Lemke, D. Summerer, B. H. Geierstanger, S. M Brittain, P. G.
Schultz, Nat. Chem. Biol. 2007, 3, 769-772.
[
19]
holds the promise to unveil yet unknown aspects of modular
as well as iterative natural product synthases.
[
13] a) A. Jäschke, FEBS Lett. 2012, 586, 2106-2111; b) R. J. Mart, R. K.
Allemann, Chem. Commun. 2016, 52, 12262-12277.
Experimental Section
[
14] a) M. Suchanek, A. Radzikowska, C. Thiele, Nat. Methods 2005, 2, 261
-268; b) N. Wu, A. Deiters, T. Ashton Cropp, D. King, P. G. Schultz, J.
n
Am. Chem. Soc. 2004, 126, 14306-14307; c) D. T. Rogerson, A.
Sachdeva, K. Wang, T. Haq, A. Kazlauskaite, S. M. Hancock, N.
Huguenin-Dezot, M. M. K. Muqit, A. M. Fry, R. Bayliss, J. W. Chin, Nat.
Chem. Biol. 2015, 11, 496-503.
The synthesis of 4, its use and detailed UPLC-HRMS analyses
of lasalocid A captured intermediates are described in the
Supplementary information (SI).
[
15] a) S. Pan, H. Zhang, C. Wang, S. C. L. Yao, S. Q. Yao, Nat. Prod. Rep.
2
016, 33, 612-620; b) L. K. Moodie, M. Hubert, X. Zhou, M . F. Albers, R.
Lundmark, S. Wanrooij, C. Hedberg, Angew. Chem. Int. Ed. 2019, 58,
417-1421.
Acknowledgements
1
[
[
16] H. Yu, J. Li, D. Wu, Z. Qiu, Y. Zhang, Chem. Soc. Rev. 2010, 39, 464-
473.
17] a) J. H. Kaplan, B. Forbush III, J. F. Hoffman, Biochemistry 1978, 17,
The authors gratefully acknowledge BBSRC (project grant
BB/J007250/1 to M. T. and MIBTP PhD studentship to S.L.K.);
EPSRC (DTA studentship to R. J.); the Sadler and Stavros groups
1929-1935; b) R. Rakauskaitė, G. Urbanavičiūtė, A. Rukšėnaitė, Z.
Liutkevičiūte, R. Juškėnas, V. Masevičius, S. Klimašauskas, Chem.
Commun. 2015, 51, 8245-8248.
(Warwick Chemistry) for the trialling of various light sources; Rod
Wesson (Warwick Chemistry) for building the UVA light box for in
vivo photolysis; Dr Lijiang Song and Philip Aston (Warwick
Chemistry) for assistance with UPLC-MS analysis.
[
[
18] a) A. Minami, M. Shimaya, G. Suzuki, A. Migita, S. S. Shinde, K. Sato, K.
Watanabe, T. Tamura, H. Oguri, H. Oikawa, J. Am. Chem. Soc. 2012,
134, 7246-7249; b) G. Suzuki, A. Minami, M. Shimaya, T. Kodama, Y.
Morimoto, H. Oguri, H. Oikawa, Chem. Lett. 2014, 43, 1779-1781.
19] a) S. L. Kilgour, D. P. A. Kilgour, P. Prasongpholchai, P. B. O’Connor, M.
Tosin, Chem. Eur. J. 2019, DOI:10.1002/chem.201903662; b) N.
Huguenin-Dezot, D. A. Alonzo, G, W. Heberlig, M. Mahesh, D. P. Nguyen,
M. H. Dornan, C. N. Boddy, T. M. Schmeing, J. W. Chin, Nature 2019,
n
Keywords: photoactivatable probes · polyketide biosynthesis ·
intermediate capture
565, 112–117.
This article is protected by copyright. All rights reserved.