Inorganic Chemistry
Article
Cu/TEMPO Catalyst Systems. J. Am. Chem. Soc. 2013, 135, 15742−
(19) Goswami, S.; Mukherjee, R. N.; Chakravorty, A. Chemistry of
ruthenium. 12. Reactions of bidentate ligands with diaquabis[2-
(arylazo)pyridine]ruthenium(II) cation. Stereoretentive synthesis of
tris chelates and their characterization: metal oxidation, ligand
reduction, and spectroelectrochemical correlation. Inorg. Chem. 1983,
22, 2825−2832.
1
5745. (d) Hoover, J. M.; Stahl, S. S. Highly Practical Copper(I)/
TEMPO Catalyst System for Chemoselective Aerobic Oxidation of
Primary Alcohols. J. Am. Chem. Soc. 2011, 133, 16901−16910.
(
e) Zhang, G.; Vasudevan, K. V.; Scott, B. L.; Hanson, S. K. J. Am.
Chem. Soc. 2013, 135, 8668−8681. (f) Bianchini, C.; Shen, P. K.
Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells
and in Direct Alcohol Fuel Cells. Chem. Rev. 2009, 109, 4183−4206.
(20) Adhikary, J.; Chakraborty, P.; Das, S.; Chattopadhyay, T.; Bauza,
A.; Chattopadhyay, S. K.; Ghosh, B.; Mautner, F. A.; Frontera, A.; Das,
D. A Combined Experimental and Theoretical Investigation on the
Role of Halide Ligands on the Catecholase-like Activity of
Mononuclear Nickel(II) Complexes with a Phenol-Based Tridentate
Ligand. Inorg. Chem. 2013, 52, 13442−13452.
(
̃
g) Sikari, R.; Sinha, S.; Jash, U.; Das, S.; Brandao, P.; de Bruin, B.;
II
Paul, N. D. Deprotonation Induced Ligand Oxidation in a Ni
Complex of a Redox Noninnocent N1-(2-Aminophenyl)benzene-1,2-
diamine and Its Use in Catalytic Alcohol Oxidation. Inorg. Chem. 2016,
(
(
21) Bruker SAINT-plus; Bruker AXS Inc., Madison, WI, USA, 2007.
22) (a) Sheldrick, G. M. SHELXS-97, a Program for Crystal Structure
5
5, 6114−6123. (h) Parua, S.; Das, S.; Sikari, R.; Sinha, S.; Paul, N. D.
One-Pot Cascade Synthesis of Quinazolin-4(3H)-ones via Nickel-
Catalyzed Dehydrogenative Coupling of o-Aminobenzamides with
Alcohols. J. Org. Chem. 2017, 82, 7165−7175. (i) Ma, Y.; Du, Z.; Liu,
J.; Xia, F.; Xu, J. Selective Oxidative C−C Bond Cleavage of a Lignin
Model Compound in the Presence of Acetic Acid with a Vanadium
Catalyst. Green Chem. 2015, 17, 4968. (j) Ray, R.; Chandra, S.; Maiti,
D.; Lahiri, G. K. Simple and Efficient Ruthenium-Catalyzed Oxidation
of Primary Alcohols with Molecular Oxygen. Chem. - Eur. J. 2016, 22,
Solution; University of Go
b) Sheldrick, G. M. SHELXL-97, a Program for Crystal Structure
Refinement; University of Gottingen, Gottingen, Germany, 1997.
23) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr.
Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112−122.
24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
̈ ̈
ttingen, Gottingen, Germany, 1997.
(
̈
̈
(
(
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.
B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.
E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J.
J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,
W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision
A.02; Gaussian, Inc., Wallingford, CT, 2010.
8
(
814−8822.
13) (a) Engel, Y.; Dahan, A.; Rozenshine-Kemelmakher, E.; Gozin,
M. Phenanthroline-Derived Ratiometric Chemosensor for Ureas. J.
Org. Chem. 2007, 72, 2318−2328. (b) Kumar, P.; Madyal, R. S.; Joshi,
U.; Gaikar, V. J. Design and Synthesis of Polymer-Bound Penta-aza
Ligand for Selective Adsorptive Separation of Cobalt(II) from
Zirconium(IV). Ind. Eng. Chem. Res. 2011, 50, 8195−8203.
(
14) Widger, L. R.; Jiang, Y.; Siegler, M. A.; Kumar, D.; Latifi, R.; de
Visser, S. P.; Jameson, G. N. L.; Goldberg, D. P. Synthesis and Ligand
Non-Innocence of Thiolate-Ligated (N S) Iron(II) and Nickel(II)
4
Bis(imino)pyridine Complexes. Inorg. Chem. 2013, 52, 10467−10480.
(
̈
15) (a) de Bruin, B.; Bill, E.; Bothe, E.; Weyhermuller, T.;
Wieghardt, K. Molecular and Electronic Structures of Bis(pyridine-2,6-
diimine)metal Complexes [ML ](PF ) (n = 0, 1, 2, 3; M = Mn, Fe,
2
6 n
Co, Ni, Cu, Zn). Inorg. Chem. 2000, 39, 2936−2947.
(
16) (a) Yi, H.; Jutand, A.; Lei, A. Evidence for the Interaction
(25) (a) Becke, A. D. Density-functional thermochemistry. III. The
t
Between BuOK and 1,10-Phenanthroline to form the 1,10-
Phenanthroline Radical Anion: a Key Step for the Activation of Aryl
Bromides by Electron Transfer. Chem. Commun. 2015, 51, 545−548.
role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652. (b) Lee,
C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density.
Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785−789.
(c) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent
electron liquid correlation energies for local spin density calculations: a
critical analysis. Can. J. Phys. 1980, 58, 1200−1211. (d) Stephens, P. J.;
Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of
Vibrational Absorption and Circular Dichroism Spectra Using Density
Functional Force Fields. J. Phys. Chem. 1994, 98, 11623−11627.
(26) Ginsberg, A. P. Magnetic exchange in transition metal
complexes. 12. Calculation of cluster exchange coupling constants
with the X. alpha.-scattered wave method. J. Am. Chem. Soc. 1980, 102,
(
b) Cuthbertson, J.; Gray, V. J.; Wilden, J. D. Observations on
Transition Metal Free Biaryl Coupling: Potassium tert-Butoxide Alone
Promotes the Reaction without Diamine or Phenanthroline Catalysts.
Chem. Commun. 2014, 50, 2575−2578. (c) Barham, J. P.; Coulthard,
G.; Emery, K. J.; Doni, E.; Cumine, F.; Nocera, G.; John, M. P.;
t
Berlouis, L. E. A.; McGuire, T.; Tuttle, T.; Murphy, J. A. KO Bu: A
Privileged Reagent for Electron Transfer Reactions? J. Am. Chem. Soc.
2
016, 138, 7402−7410.
17) Wang, J.; Liu, C.; Yuan, J.; Lei, L. Transition-metal-free aerobic
oxidation of primary alcohols to carboxylic acids. New J. Chem. 2013,
7, 1700−1703.
18) (a) Chaudhuri, P.; Hess, M.; Mu
Weyhermuller, T.; Wieghardt, K. Aerobic Oxidation of Primary
(
1
(
11−117.
27) (a) Noodleman, L.; Case, D. A.; Aizman, A. Broken symmetry
analysis of spin coupling in iron-sulfur clusters. J. Am. Chem. Soc. 1988,
10, 1001−1005. (b) Noodleman, L.; Davidson, E. R. Ligand spin
3
(
̈
ller, J.; Hildenbrand, K.; Bill, E.;
̈
1
Alcohols (Including Methanol) by Copper(II)- and Zinc(II)-Phenoxyl
Radical Catalysts. J. Am. Chem. Soc. 1999, 121, 9599−9610. (b) Halfen,
J. A.; Young, V. G.; Tolman, W. B. Modeling of the Chemistry of the
Active Site of Galactose Oxidase. Angew. Chem., Int. Ed. Engl. 1996, 35,
polarization and antiferromagnetic coupling in transition metal dimers.
Chem. Phys. 1986, 109, 131−143. (c) Noodleman, L.; Norman, J. G.,
Jr.; Osborne, J. H.; Aizman, C.; Case, D. A. Models for ferredoxins:
electronic structures of iron-sulfur clusters with one, two, and four iron
atoms. J. Am. Chem. Soc. 1985, 107, 3418−3426. (d) Noodleman, L.
Valence bond description of antiferromagnetic coupling in transition
metal dimers. J. Chem. Phys. 1981, 74, 5737−5743.
1
687−1690. (c) Halfen, J. A.; Jazdzewski, B. A.; Mahapatra, S.;
Berreau, L. M.; Wilkinson, E. C.; Que, L.; Tolman, W. B. Synthetic
Models of the Inactive Copper(II)−Tyrosinate and Active Copper-
(
II)−Tyrosyl Radical Forms of Galactose and Glyoxal Oxidases. J. Am.
(
28) Mulliken, R. S. Electronic Population Analysis on LCAO−MO
Chem. Soc. 1997, 119, 8217−8227. (d) McCann, S. D.; Stahl, S. S.
Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol
Oxidation: Evidence for Uncooperative Catalysis. J. Am. Chem. Soc.
Molecular Wave Functions. J. Chem. Phys. 1955, 23, 1833−1840.
2
́
016, 138, 199−206. (e) Marko, I. E.; Giles, P. R.; Tsukazaki, M.;
Brown, S. M.; Urch, C. J. Copper-Catalyzed Oxidation of Alcohols to
Aldehydes and Ketones: An Efficient, Aerobic Alternative. Science
1
996, 274, 2044−2046.
Q
Inorg. Chem. XXXX, XXX, XXX−XXX