Communication
atoms, confirming the excellent stability of Cu-SAs/C
ChemComm
3
N
4
. The
8 C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He,
R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer,
D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock,
E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely and G. J. Hutchings,
Angew. Chem., Int. Ed., 2012, 51, 5129.
9 Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang,
C. T. Wang, X. J. Meng, H. Q. Yang, C. Mesters and F. S. Xiao,
Science, 2020, 367, 193.
0 L. Nie, D. H. Mei, H. F. Xiong, B. Peng, Z. B. Ren, X. I. P. Hernandez,
A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye and
Y. Wang, Science, 2017, 358, 1419.
1 J. Lin, A. Q. Wang, B. T. Qiao, X. Y. Liu, X. F. Yang, X. D. Wang,
J. X. Liang, J. Li, J. Y. Liu and T. Zhang, J. Am. Chem. Soc., 2013,
135, 15314.
ICP-OES study (Table S5, ESI†) on the spent sample after 3 cycles
of reaction showed that the Cu loading remained constant and
no obvious leakage was found, suggesting the high structure
stability of Cu-SAs/C N . Electron paramagnetic resonance (EPR)
3
4
spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was
used to detect the radicals as shown in Fig. 3d. The presence of
1
ꢀ
ꢀ
ꢀ
OH, CH
3
and OOH radicals in the reaction mixture confirmed
in
solution was triggered by radicals with the participation
that the selective oxidation of methane over Cu-SAs/C
H
of CH .
3 4
N
1
O
2 2
ꢀ
29,30
3
In conclusion, a Cu-SAs/C N catalyst with Cu exclusively in 12 H. B. Zhang, J. Wei, J. C. Dong, G. G. Liu, L. Shi, P. F. An, G. X. Zhao,
3
4
J. T. Kong, X. J. Wang, X. G. Meng, J. Zhang and J. H. Ye,
Angew. Chem., Int. Ed., 2016, 55, 14310.
single atoms was prepared and tested for selective oxidation of
methane. The Cu-SAs/C catalyst exhibited remarkable catalytic
3 4
N
1
1
3 Y. Pan, R. Lin, Y. J. Chen, S. J. Liu, W. Zhu, X. Cao, W. X. Chen,
K. L. Wu, W. C. Cheong, Y. Wang, L. R. Zheng, J. Luo, Y. Lin,
Y. Q. Liu, C. G. Liu, J. Li, Q. Lu, X. Chen, D. S. Wang, Q. Peng,
C. Chen and Y. D. Li, J. Am. Chem. Soc., 2018, 140, 4218.
4 Y. Zheng, Y. Jiao, Y. H. Zhu, Q. R. Cai, A. Vasileff, L. H. Li, Y. Han,
Y. Chen and S. Z. Qiao, J. Am. Chem. Soc., 2017, 139, 3336.
performance when hydrogen peroxide was used as an oxidant,
À1
and presented a high TOF value of 11 h with 95% oxygenate
selectivity under ambient temperature. The presence of abundant
anchoring sites in C N led to highly dispersed Cu–N moieties, as
3 4 4
illustrated by AC-HAADF-STEM and EXAFS results and DFT 15 Q. K. Shen, C. Y. Cao, R. K. Huang, L. Zhu, X. Zhou, Q. H. Zhang,
L. Gu and W. G. Song, Angew. Chem., Int. Ed., 2020, 59, 1216.
calculations. The as-obtained Cu–N moieties coordinated in the
4
1
6 W. X. Huang, S. R. Zhang, Y. Tang, Y. T. Li, L. Nguyen, Y. Y. Li,
J. J. Shan, D. Q. Xiao, R. Gagne, A. I. Frenkel and F. F. Tao,
Angew. Chem., Int. Ed., 2016, 55, 13441.
C N matrix were suggested to be the underlying active sites for
3
4
methane conversion.
This work was supported by the National Natural Science 17 J. J. Xie, R. X. Jin, A. Li, Y. P. Bi, Q. S. Ruan, Y. C. Deng, Y. J. Zhang,
S. Y. Yao, G. Sankar, D. Ma and J. W. Tang, Nat. Catal., 2018, 1, 889.
8 Y. W. Kwon, T. Y. Kim, G. H. Kwon, J. H. Yi and H. J. Lee, J. Am.
Chem. Soc., 2017, 139, 17694.
Foundation of China (91945301), the National Key R&D Program
of China (2017YFB0602202), the Program of Shanghai Academic/
1
Technology Research Leader (20XD1404000), the Key Research 19 H. Zhou, T. Y. Liu, X. Y. Zhao, Y. F. Zhao, H. W. Lv, S. Fang,
X. Q. Wang, F. Y. Zhou, Q. Xu, J. Xu, C. Xiong, Z. G. Xue, K. Wang,
W. C. Cheong, W. Xi, L. Gu, T. Yao, S. Q. Wei, X. Hong, J. Luo, Y. F. Li
Program of Frontier Sciences of the Chinese Academy of Sciences
(Grant No. QYZDB-SSW-SLH035), the ‘‘Transformational Technol-
and Y. E. Wu, Angew. Chem., Int. Ed., 2019, 58, 18388.
0 X. J. Cui, H. B. Li, Y. Wang, Y. L. Hu, L. Hua, H. Y. Li, X. W. Han,
Q. F. Liu, F. Yang, L. M. He, X. Q. Chen, Q. Y. Li, J. P. Xiao,
D. H. Deng and X. H. Bao, Chem, 2018, 4, 1902.
1 W. J. Zang, T. Yang, H. Y. Zou, S. B. Xi, H. Zhang, X. M. Liu,
Z. K. Kou, Y. H. Du, Y. P. Feng, L. Shen, L. L. Duan, J. Wang and
S. J. Pennycook, ACS Catal., 2019, 9, 10166.
2 H. Yan, Y. Lin, H. Wu, W. H. Zhang, Z. H. Sun, H. Cheng, W. Liu,
C. L. Wang, J. J. Li, X. H. Huang, T. Yao, J. L. Yang, S. Q. Wei and
J. L. Lu, Nat. Commun., 2017, 8, 1070.
ogies for Clean Energy and Demonstration’’ and Strategic Priority
Research Program of CAS (Grant No. XDA21020600) and the
Youth Innovation Promotion Association of CAS.
2
2
2
Conflicts of interest
There are no conflicts to declare.
2
2
2
2
2
2
3 Y. Yu, W. Yan, X. F. Wang, P. Li, W. Y. Gao, H. S. Zou, S. M. Wu and
K. J. Ding, Adv. Mater., 2018, 30, 1705060.
4 X. X. Jin, R. Y. Wang, L. X. Zhang, R. Si, M. Shen, M. Wang, J. J. Tian
and J. L. Shi, Angew. Chem., Int. Ed., 2020, 59, 6827.
5 F. Li, G. F. Han, H. J. Noh, S. J. Kim, Y. L. Lu, H. Y. Jeong, Z. P. Fu
and J. B. Baek, Energy Environ. Sci., 2018, 11, 2263.
6 P. T. Wang, M. Qiao, Q. Shao, Y. C. Pi, X. Zhu, Y. F. Li and
X. Q. Huang, Nat. Commun., 2018, 9, 4933.
7 T. Zhang, D. Zhang, X. H. Han, T. Dong, X. W. Guo, C. S. Song, R. Si,
W. Liu, Y. F. Liu and Z. K. Zhao, J. Am. Chem. Soc., 2018, 140, 16936.
8 X. X. Wang, D. A. Cullen, Y. T. Pan, S. Hwang, M. Wang, Z. Feng,
J. Wang, M. H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su,
K. L. More, J. S. Spendelow and G. Wu, Adv. Mater., 2018,
Notes and references
1
P. Tang, Q. J. Zhu, Z. X. Wu and D. Ma, Energy Environ. Sci., 2014,
, 2580.
7
2
E. V. Kondratenko, T. Peppel, D. Seeburg, V. A. Kondratenko,
N. Kalevaru, A. Martin and S. Wohlrab, Catal. Sci. Technol., 2017,
7, 366.
3
4
P. Schwach, X. L. Pan and X. H. Bao, Chem. Rev., 2017, 117, 8497.
L. S. Meng, Z. Y. Chen, Z. Y. Ma, S. He, Y. D. Hou, H. H. Li,
R. S. Yuan, X. H. Huang, X. X. Wang, X. C. Wang and J. L. Long,
Energy Environ. Sci., 2018, 11, 294.
5
6
A. Holmen, Catal. Today, 2009, 142, 2.
N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban,
N. Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock,
S. H. Taylor, C. J. Kiely and G. J. Hutchings, Science, 2017, 358, 223.
M. H. Ab Rahim, M. M. Forde, R. L. Jenkins, C. Hammond, Q. He,
N. Dimitratos, J. A. Lopez-Sanchez, A. F. Carley, S. H. Taylor,
30, 1706758.
2
9 S. X. Bai, F. F. Liu, B. L. Huang, F. Li, H. P. Lin, T. Wu, M. Z. Sun,
J. B. Wu, Q. Shao, Y. Xu and X. Q. Huang, Nat. Commun., 2020,
11, 954.
7
D. J. Willock, D. M. Murphy, C. J. Kiely and G. J. Hutchings, 30 H. Song, X. G. Meng, S. Y. Wang, W. Zhou, X. S. Wang, T. Kako and
Angew. Chem., Int. Ed., 2013, 52, 1280. J. H. Ye, J. Am. Chem. Soc., 2019, 141, 20507.
1
4680 | Chem. Commun., 2020, 56, 14677--14680
This journal is © The Royal Society of Chemistry 2020