6740
Finally, ipso iododestannylation of 1b0 was carried out on a small scale with unlabeled sodium
iodide in the presence of an oxidizing agent (Scheme 3).22 The goal was to establish the conditions
needed for conversion of 1b0 to product 1 with a minimum of handling and chromatographic
procedures so that the reaction could be subsequently carried out using Na125I just prior to use
with the biological targets.
Acknowledgements
This work was supported by NIH Grant HL-16660.
References
1. (a) Bayley, H. Photogenerated Reagents in Biochemistry and Molecular Biology; North-Holland/Elsevier:
Amsterdam, 1983. (b) Fedan, J. S.; Hogaboom, G. K.; O'Donnell, J. P. Biochem. Pharmacol. 1984, 33, 1167±
1180. (c) Brunner, J. Methods Enzymol. 1989, 172, 628±687. (d) Brunner, J. Annu. Rev. Biochem. 1993, 62, 483±
514. (e) Kotzyba-Hibert, F.; Kapfer, I.; Goeldner, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1296±1312.
(f) Fleming, S. A. Tetrahedron 1995, 51, 12479±12520. (g) Dorman, G.; Prestwich, G. D. Trends Biotechnol.
2000, 18, 64±77. (h) Dorman, G.; Prestwich, D. D. Biochemistry 1994, 33, 5661±5673.
2. Diusion of carbenes from the site of formation is limited because of their short lifetimes. Carbenes insert
randomly into the functional groups found in biomolecules, including normally unreactive saturated C±H bonds
of apolar amino acid side chains at or near the ligand-binding site.
3. (a) Schmitz, E. In Houben-Weyl, Methoden der Organischen Chemie; Klamann, D., Ed.; G. Thieme Verlag:
Stuttgart, 1982; Vol. E 16c, pp. 678±728. (b) Chemistry of Diazirines; Liu, M. T. H., Ed.; CRC Press: Boca Raton,
FL, 1987.
4. Brunner, J.; Senn, H.; Richards, F. M. J. Biol. Chem. 1980, 255, 3313±3318.
5. Hatanaka, Y.; Nakayama, H.; Kanaoka, Y. Rev. Heteroatom. Chem. 1996, 14, 213±243.
6. The electron-withdrawing tri¯uoromethyl group suppresses photorearrangement to a linear diazo compound and
other intramolecular rearrangements that can occur in carbenes after photolysis.1e
7. Advantages of tri¯uoromethylphenyl diazirines: photoactivation at l >350 nm, avoiding protein-damaging
wavelengths; high chemical stability in subdued ambient lighting toward mild reducing agents, oxidizing agents,
acidic and basic conditions, and elevated temperatures.1
8. Brunner, J.; Semenza, G. Biochemistry 1981, 20, 7174±7182.
9. Hatanaka, Y.; Hashimoto, M.; Kurihara, H.; Nakayama, H.; Kanaoka, Y. J. Org. Chem. 1994, 59, 383±387.
10. Weber, T.; Brunner, J. J. Am. Chem. Soc. 1995, 117, 3084±3095.
11. Bevers, E. M.; Comfurius, P.; Dekkers, D. W.; Zwaal, R. F. Biochim. Biophys. Acta 1999, 1439, 317±330.
12. For a review of transphosphatidylation, see: Bittman, R. In Lipid Synthesis and Manufacture; Gunstone, F. D.,
Ed.; Marcel Dekker: New York, 1999; pp. 125±144.
13. Sphingolipid speci®city of Semliki Forest virus fusion: e.g. Moesby, L.; Corver, J.; Erukulla, R. K.; Bittman, R.;
Wilschut, J. Biochemistry 1995, 34, 10319±10324.
14. For a previous synthesis of a radioiodinated TID photoanity analog of ceramide, see: Huwiler, A.; Brunner, J.;
Hummel, R.; Vervoordeldonk, M.; Stabel, S.; Van den Bosch, H.; Pfeilschifter, J. Proc. Natl. Acad. Sci. USA
1996, 93, 6959±6963. For a radioiodinated aryl azido analog of ceramide, see: Zegers, M. M. P.; Kok, J. W.;
Hoekstra, D. Biochem. J. 1997, 328, 489±498.
15. [125I-TID]-PC: (a) Ref. 1d. (b) Durrer, P.; Gaudin, Y.; Ruigrok, R. W.; Graf, R.; Brunner, J. J. Biol. Chem. 1995,
270, 17575±17581. (c) Goldmann, W. H.; Niles, J. L.; Arnaout, M. A. Eur. J. Biochem. 1999, 261, 155±162.
16. Farina, V.; Krishnamarthy, V.; Scott, W. J. Org. React. 1997, 50, 1±652.
17. Boyer, R. F. Modern Experimental Biochemistry, 2nd Ed.; Benjamin: Redwood City; p. 176.
18. Hatanaka, Y.; Hashimoto, M.; Kirihara, H.; Nakayama, H.; Kanaoka, Y. J. Org. Chem. 1994, 59, 383±387.
19. Bernard, A. M.; Ghiani, M. R.; Piras, P. P.; Rivoldini, A. Synthesis 1989, 287±289.