8342
H. Ikeda et al. / Tetrahedron Letters 48 (2007) 8338–8342
5
. (a) Gorodetsky, B.; Branda, N. R. Adv. Funct. Mater.
007, 17, 786–796; (b) Matsuda, K.; Yokojima, S.;
Moriyama, Y.; Nakamura, S.; Irie, M. Chem. Lett. 2006,
5, 900–901; (c) Moriyama, Y.; Matsuda, K.; Tanifuji, N.;
Irie, S.; Irie, M. Org. Lett. 2005, 7, 3315–3318; (d)
Gorodetsky, B.; Samachetty, H. D.; Donkers, R. L.;
Workentin, M. S.; Branda, N. R. Angew. Chem. Int. Ed.
12. PM3 calculations were performed using the program
1
3
2
GAUSSIAN 98. The Cartesian coordinates for the opti-
mized structures of 3b [(i) anti-double parallel] and 4b [(vi)
anti-antiparallel and trans] are given in the Supplementary
data. Molecular geometries in Figure 2 were drawn using
3
1
4
the WinMOPAC 3.9 software.
13. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.;
Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.;
Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.
N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo,
C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P.
Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill,
P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.;
Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople,
J. A. Gaussian 98, Revision A.11.4; Gaussian, Inc.:
Pittsburgh PA, 1998.
2004, 43, 2812–2815; (e) Peters, A.; Branda, N. R. J. Am.
Chem. Soc. 2003, 125, 3404–3405; (f) Peters, A.; Branda,
N. R. Chem. Commun. 2003, 954–955.
6
. Ewen, J. A.; Elder, M. J.; Jones, R. L.; Rheingold, A. L.;
Liable–Sands, L. M.; Sommer, R. D. J. Am. Chem. Soc.
2001, 123, 4763–4773.
7
8
. Lucas, P.; Mehdi, N. E.; Ho, H. A.; B e´ langer, D.; Breau,
L. Synthesis 2000, 9, 1253–1258.
. Physical data of key and new compounds 6: Pale yellow oil;
1
H NMR (CDCl
H), 7.06 (d, J = 5.4 Hz, 1H); C NMR (CDCl ) d
3
) dppm 2.40 (s, 3H), 6.89 (d, J = 5.4 Hz,
13
1
1
7
2
9
1
3
ppm
4.44, 109.39, 122.79, 129.96, 134.21; IR (neat) 590, 766,
85, 853, 1003, 1084, 1155, 1340, 1439, 1528, 2856,
ꢁ1
+
920 cm ; EIMS m/z 177 (35, M ), 176 (66), 175 (33),
7 (100). Compound 7: Colorless solid (n-hexane), mp 99–
1
00 ꢁC; H NMR (CDCl
3
) dppm 2.66 (s, 6H), 7.01 (d,
1
3
J = 5.4 Hz, 2H), 7.12 (d, J = 5.4 Hz, 2H); C NMR
14. WinMOPAC 3.9, Fujitsu Ltd, Tokyo, Japan, 2004.
15. The energies obtained by using the PM3 method were
assumed to contain considerable errors as compared with
those arising from DFT calculations, which are now in
progress.
(
CDCl ) d
14.95 (2C), 121.08 (2C), 129.63 (2C), 137.80
3
ppm
(
1
2C), 147.66 (2C), 187.46; IR (KBr) 716, 739, 849, 1265,
366, 1435, 1520, 1638 cm ; EIMS m/z 222 (63, M ), 221
ꢁ
1
+
(
(
24), 209 (10), 208 (15), 207 (100), 189 (36), 174 (13), 161
13), 125 (46), 97 (19), 96 (12), 53 (22); Anal. Calcd for
16. Calculations indicate that photoproduct 4b can exist in
three conformationally isomeric forms, including (vi) anti-
antiparallel and trans{ca. 20.1 kcal/mol relative to 3b [(i)
anti-double parallel]}, (vii) parallel and trans (ca. 20.7 kcal/
mol), and (viii) syn-antiparallel and trans (ca. 21.2 kcal/
C
11
H
10
S
2
O: C, 59.43; H, 4.53; S, 28.84. Found: C, 59.73;
H, 4.62; S, 29.08. Compound 3a: Colorless solid (CH Cl
1.92 (s,
2
2
–
1
MeOH); mp 203–204 ꢁC; H NMR (CDCl ) d
3
ppm
1
2H), 6.49 (d, J = 5.4 Hz, 4H), 6.84 (d, J = 5.4 Hz, 4H);
1
3
15
C NMR (CDCl
3
) dppm 13.72 (4C), 120.49 (4C), 130.23
mol), in a ratio of 66:24:10 at 298 K. A similar energy
(
6
4C), 131.65 (2C), 136.18 (4C), 139.18 (4C); IR (KBr) 646,
diagram was obtained for 3a and 4a. For the detail, see the
Supplementary data.
ꢁ
60, 708, 725, 835, 1256, 1429 cm ; UV (CH Cl )
2 2
1
k = 314 nm (max, loge = 4.17); EIMS m/z 412 (100,
M ), 397 (15), 207 (12), 414 (20); Anal. Calcd for
17. A single crystal or solution of 3 was irradiated with a
150 W Xe lamp [k = 335 or 350 nm for UV, 450 or 490 nm
for Vis, band pass 20 nm] through a spectrometer
equipped to a JASCO FP-6300 spectrofluorometer.
18. A prolonged UV irradiation of 3 resulted in the formation
of an unidentified product (8). The photocycloreversion of
4 to 3 may be concurrent with the formation of 8.
Isolation of 4 and 8 and identification of 8 are now in
progress and will be published elsewhere.
+
C
22
H
20
S
4
: C, 64.04; H, 4.89; S, 31.08. Found: C, 3.84;
H, 4.98; S, 31.78. Compound 3b: Colorless solid
1
(
d
CH
ppm 1.90 (s, 12H), 2.34 (s, 12H), 6.50 (s, 4H);
NMR (CDCl ) d ppm 14.02 (4C), 22.47 (4C), 131.21 (2C),
31.82 (4C), 134.63 (4C), 138.83 (4C), 139.60 (4C);
IR (KBr) 507, 860, 966, 1151, 1188, 1204, 1312, 1418,
2
Cl
2
–n-hexane): mp 119–120 ꢁC; H NMR (CDCl )
3
13
C
3
1
ꢁ1
1
431 cm
;
UV (CH
2
Cl
2
)
k = 327 nm (sh, loge =
19. Eap and Ecp were measured on the ALS model 600C
electrochemical analyzer by CV (Pt electrode, scan rate
10 mV/s) in CH CN containing Et NClO (0.1 M) as a
4
.10); HRMS (ESI) Calcd for C H S +Na, 618.9849;
2
6
28 8
found, 618.9846. Anal. Calcd for C H S : C,
2
6
28
8
3
4
4
5
4
2.31; H, 4.73; S, 45.05. Found: C, 52.40; H, 4.94; S,
3.94.
supporting electrolyte.
20. An attempt of electron-transfer reactions using one-
electron oxidant was also investigated preliminarily. For
example, the oxidation of 3b with tris(p-bromophenyl)-
aminium hexachloroantimonate (2 equiv kmax = 728 nm)
9
. Crystallographic data of 3a and 3b have been deposited
with the Cambridge Crystallographic Data Center as
supplementary publication nos. CCDC 654282 and
6
in CH Cl resulted in the coloration of the solution
2 2
2+
by emailing data_request@ccdc.cam.ac.uk, or by contact-
ing The Cambridge Crystallographic Data Center, 12,
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223
(kmax = 582 nm), suggesting a formation of 4b
The
detail will be given elsewhere.
21. As one of the reviewers pointed out, the stereochemistry of
the products of photochemical and electrochemical
reactions is a quite important issue. In our case, it is
strongly suggested that the product 4b of photochemical
reaction is identical with that of electrochemical reaction,
because their oxidation potentials are almost the same (See
the text). The detail will be given elsewhere.
3
36033.
1
1
0. Figure 1 was depicted with CrystalMaker for Mac OS X
1
1
Ver. 7.2.3 2006.