Inorganic Chemistry
ARTICLE
influence the intradinuclear magnetic interactions (Figure 6),
although such interactions are expected to be very weak. These
features clearly suggest that the strength of the local crystal field
(4) Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli, R. Science 1994,
265, 1054.
(5) Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.;
Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem.
Soc. 1993, 115, 1804.
modulated by the versatile H ovph ligand, together with the
2
exchange interactions between them induced by the μ-O bridges,
is responsible for the different magnetic behaviors observed.
(
(
6) Leuenberger, M. N.; Loss, D. Nature 2001, 410, 789.
7) Hill, S.; Edwards, R. S.; Aliaga-Alcalde, N.; Christou, G. Science
2
ꢀ
In complex 1, the ovph ligand has the capability not only of
holding a suitable crystal field on the local dysprosium sites but
also of promoting magnetic interactions. Accordingly, such a
complex can be regarded as a lanthanide SMM building block,
which can be used for the design of more efficient polynuclear
SMMs. Recent work indicates that the replacement of the auxiliary
ligands in complex 1 may suppress their zero-field tunneling of
2
003, 302, 1015.
(
(
8) Bogani, L.; Wernsdorfer, W. Nat. Mater. 2008, 7, 179.
9) Urdampilleta, M.; Klyatskaya, S.; Cleuziou, J. P.; Ruben, M.;
Wernsdorfer, W. Nat. Mater. 2011, 10, 502.
(10) Aromí, G.; Brechin, E. K. Struct. Bonding (Berlin) 2006, 122, 1.
(11) Sessoli, R.; Powell, A. K. Coord. Chem. Rev. 2009, 253, 2328.
(
12) Lin, S.-Y.; Guo, Y.-N.; Xu, G.-F.; Tang, J. Chin. J. Appl. Chem.
2010, 27, 1365.
13) Guo, Y.-N.; Xu, G.-F.; Guo, Y.; Tang, J. Dalton Trans. 2011,
DOI: 10.1039/C1DT10474H.
14) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y.
J. Am. Chem. Soc. 2003, 125, 8694.
6
7
magnetization. Further work to prepare and investigate in-
creasingly larger cluster compounds based on the magnetic building
blocks of 1 is currently in progress.
(
(
’
CONCLUSION
(15) Ishikawa, N. J. Phys. Chem. A 2003, 107, 5831.
(
16) Kajiwara, T.; Takahashi, K.; Hiraizumi, T.; Takaishi, S.; Yamashita,
Three dinuclear dysprosium(III) complexes have been assem-
M. CrystEngComm 2009, 11, 2110.
bled using the versatile H ovph ligand. The aroylhydrazone
2
(
(
17) Sorace, L.; Benelli, C.; Gatteschi, D. Chem. Soc. Rev. 2011, 40, 3092.
18) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. J. Am. Chem. Soc.
ligands form different coordination modes in three title com-
plexes (Scheme 2) because of their tautomeric maneuver,
depending on the reaction conditions. The structural differences
induced by the different coordination modes in 1ꢀ3) clearly
2
005, 127, 3650.
19) AlDamen, M. A.; Clemente-Juan, J. M.; Coronado, E.; Martí-
(
(
Gastaldo, C.; Gaita-Arino, A. J. Am. Chem. Soc. 2008, 130, 8874.
(20) AlDamen, M. A.; Cardona-Serra, S.; Clemente-Juan, J. M.;
Coronado, E.; Gaita-Ari ~n o, A.; Martí-Gastaldo, C.; Luis, F.; Montero, O.
Inorg. Chem. 2009, 48, 3467.
affect the orbital overlaps between the metal centers and ligands,
as well as the local tensor of anisotropy on each dysprosium site
and their relative orientations, therefore generating dissimilar
dynamic magnetic behavior; namely, compounds 1 and 2 show
SMM behavior, while compound 3 does not display slow re-
laxation of magnetization. Theoretical studies are required to
thoroughly analyze the DyꢀOꢀDy angle/magnetic property
relationship. The present results demonstrate that suitable crystal
fields on the dysprosium sites may lead to an efficient blocking of
magnetization. This provides a promising strategy for enhancing
the SMM properties of polynuclear lanthanide-based complexes
via fine-tuning of the local environments of the lanthanide ions.
(21) Luis, F.; Martínez-P ꢀe rez, M. J.; Montero, O.; Coronado, E.;
Cardona-Serra, S.; Martí-Gastaldo, C.; Clemente-Juan, J. M.; Ses ꢀe , J.;
Drung, D.; Schurig, T. Phys. Rev. B 2010, 82, 060403.
(
22) Lin, P. H.; Burchell, T. J.; Cl ꢀe rac, R.; Murugesu, M. Angew.
Chem., Int. Ed. 2008, 47, 8848.
23) Lin, P. H.;Burchell, T. J.;Ungur, L.;Chibotaru, L. F.; Wernsdorfer,
W.; Murugesu, M. Angew. Chem., Int. Ed. 2009, 48, 9489.
24) Guo, Y.-N.; Xu, G.-F.; Gamez, P.; Zhao, L.; Lin, S.-Y.; Deng, R.;
Tang, J.; Zhang, H.-J. J. Am. Chem. Soc. 2010, 132, 8538.
25) Hewitt, I. J.; Tang, J.; Madhu, N. T.; Anson, C. E.; Lan, Y.;
(
(
(
Luzon, J.; Etienne, M.; Sessoli, R.; Powell, A. K. Angew. Chem., Int. Ed.
2010, 49, 6352.
’
ASSOCIATED CONTENT
(
26) Blagg, R. J.; Muryn, C. A.; McInnes, E. J. L.; Tuna, F.;
S
Supporting Information. Tables of hydrogen bonds
Winpenny, R. E. P. Angew. Chem., Int. Ed. 2011, 50, 6530.
(27) Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. Nat. Chem.
2011, 3, 538.
b
(
Table S1) and relaxation fitting parameters (Table S2) and
figures of crystal structures (Figures S1 and S2) and magnetic
measurements (Figures S3ꢀS7). This material is available free of
charge via the Internet at http://pubs.acs.org.
(
28) Rinehart, J. D.; Meihaus, K. R.; Long, J. R. J. Am. Chem. Soc.
010, 132, 7572.
29) Tang, J.; Hewitt, I.; Madhu, N. T.; Chastanet, G.; Wernsdorfer,
2
(
W.; Anson, C. E.; Benelli, C.; Sessoli, R.; Powell, A. K. Angew. Chem., Int.
Ed. 2006, 45, 1729.
’
AUTHOR INFORMATION
Corresponding Author
(30) Luzon, J.; Bernot, K.; Hewitt, I. J.; Anson, C. E.; Powell, A. K.;
Sessoli, R. Phys. Rev. Lett. 2008, 100, 247205.
*E-mail: tang@ciac.jl.cn.
(31) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem., Int. Ed.
2
008, 47, 4126.
’
ACKNOWLEDGMENT
(32) Car, P.-E.; Perfetti, M.; Mannini, M.; Favre, A.; Caneschi, A.;
Sessoli, R. Chem. Commun. 2011, 47, 3751.
33) Abbas, G.; Lan, Y.; Kostakis, G. E.; Wernsdorfer, W.; Anson,
C. E.; Powell, A. K. Inorg. Chem. 2010, 49, 8067.
34) Li, S.-H.; Gao, S.-K.; Liu, S.-X.; Guo, Y.-N. Cryst. Growth Des.
010, 10, 495.
35) Yu, G. M.; Li, Y. H.; Zou, L. F.; Zhu, J. W.; Liu, X. Q. Acta
We thank the National Natural Science Foundation of China
Grants 20871113, 91022009, and 20921002) for its financial
support.
(
(
(
2
’
REFERENCES
(
(
1) Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets;
Oxford University Press: Oxford, U.K., 2006.
2) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature
993, 365, 141.
3) Gatteschi, D.; Sessoli, R. Angew. Chem., Int. Ed. 2003, 42, 268.
Crystallogr., Sect. E 2010, 66, M693.
(36) Yu, G. M.; Zhao, L.; Guo, Y. N.; Xu, G. F.; Zou, L. F.; Tang,
J. K.; Li, Y. H. J. Mol. Struct. 2010, 982, 139.
(37) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure
Solution; University of G €o ttingen: G €o ttingen, Germany, 1997.
(
1
(
9
712
dx.doi.org/10.1021/ic2014978 |Inorg. Chem. 2011, 50, 9705–9713