Organic Letters
Letter
α face. Finally, after trying various reagents and conditions to
get β epoxide, we relied on the formation of halohydrin, a case
where C10−C11 double bond in 12 would form α bromonium
ion (from the least hindered face) which, upon diaxial opening
with water, would result in the halohydrin formation. Then,
finally nucleophilic attack of the hydroxy group on halide under
basic conditions would result in the formation of the desired β
epoxide. Unfortunately, compound 12, when subjected to
halohydrin formation using NBS or 1,3-dibromo-5,5- dime-
thylhydantoin,11 resulted in decomposition of starting material.
It was thought that the aromatic ring in compound 12 is highly
electron rich and hence prone to oxidation under above
conditions. Hence, it was decided to protect phenolic OH
group of compound 12 as its acetate. Thus, compound 12 on
treatment with Ac2O and Et3N in the presence of catalytic
amount of DMAP afforded acetate 30 in 91% yield. Compound
30 on treatment with 1,3-dibromo-5,5-dimethylhydantoin
(DBDMH)11 smoothly generated halohydrin product, which
on exposure to KOH resulted in the formation of the desired β
epoxide and concurrent hydrolysis of acetate group to give
callistrilone A (1) in 87% yield over two steps. The spectral
data of synthetic callistrilone A (1) (1H,13C, IR and HRMS)
were in complete agreement with those of natural 1.3
ACKNOWLEDGMENTS
■
We thank Mr. Dinesh De, IIT Kanpur, for his help with the X-
ray analysis. S.D. thanks CSIR, New Delhi, for the award of a
research fellowship.
REFERENCES
■
(1) (a) Singh, I. P.; Bharate, S. B. Nat. Prod. Rep. 2006, 23, 558.
(b) Ciochina, R.; Grossman, R. B. Chem. Rev. 2006, 106, 3963.
(c) Pettigrew, J. D.; Wilson, P. D. Org. Lett. 2006, 8, 1427. (d) Yin, S.;
Xue, J.-J.; Fan, C.-Q.; Miao, Z.-H.; Ding, J.; Yue, J.-M. Org. Lett. 2007,
9, 5549. (e) Mondal, M.; Puranik, V. G.; Argade, N. P. J. Org. Chem.
2007, 72, 2068. (f) Singh, I. P.; Sidana, J.; Bharate, S. B.; Foley, W. J.
Nat. Prod. Rep. 2010, 27, 393. (g) Njardarson, J. T. Tetrahedron 2011,
67, 7631. (h) Lam, H. C.; Spence, J. T. J.; George, J. H. Angew. Chem.,
Int. Ed. 2016, 55, 10368. (i) Lawrence, A. L.; Adlington, R. M.;
Baldwin, J. E.; Lee, V.; Kershaw, J. A.; Thompson, A. L. Org. Lett.
2010, 12, 1676. (j) Chapman, L. M.; Beck, J. C.; Wu, L.; Reisman, S. E.
J. Am. Chem. Soc. 2016, 138, 9803. (k) Li, C.-J.; Ma, J.; Sun, H.; Zhang,
D.; Zhang, D.-M. Org. Lett. 2016, 18, 168. (l) Boyce, J. H.;
Eschenbrenner-Lux, V.; Porco, J. A., Jr. J. Am. Chem. Soc. 2016, 138,
14789.
(2) Choudhary, M. I.; Khan, N.; Ahmad, M.; Yousuf, S.; Fun, H. K.;
Soomro, S.; Asif, M.; Mesaik, M. A.; Shaheen, F. Org. Lett. 2013, 15,
1862.
(3) (a) Cao, J.-Q.; Huang, X.-J.; Li, Y.-T.; Wang, Y.; Wang, L.; Jiang,
R.-W.; Ye, W.-C. Org. Lett. 2016, 18, 120. (b) Hill, R. A.; Sutherland,
A. Nat. Prod. Rep. 2016, 33, 530.
(4) Cheng, M.-J.; Cao, J.-Q.; Yang, X.-Y.; Zhong, L.-P.; Hu, L.-J.; Lu,
X.; Hou, B.-L.; Hu, Y.-J.; Wang, Y.; You, X.-F.; Wang, L.; Ye, W.-C.; Li,
(5) (a) Hosokawa, T.; Yamashita, S.; Murahashi, S.-I.; Sonoda, A.
Bull. Chem. Soc. Jpn. 1976, 49, 3662. (b) Hegedus, L. S.; Allen, G. F.;
Bozell, J. J.; Waterman, E. L. J. Am. Chem. Soc. 1978, 100, 5800.
(c) Hosokawa, T.; Uno, T.; Inui, S.; Murahashi, S.-I. J. Am. Chem. Soc.
1981, 103, 2318. (d) Hosokawa, T.; Okuda, C.; Murahashi, S.-I. J. Org.
Chem. 1985, 50, 1282. (e) Larock, R. C.; Wei, L.; Hightower, T. R.
Synlett 1998, 1998, 522. (f) Tsuji, J. Comprehensive Organic Synthesis II;
Elsevier Ltd., 1991; Vol. 7. (g) Trend, R. M.; Ramtohul, Y. K.; Ferreira,
E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892. (h) Hayashi,
T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. J. Am. Chem. Soc. 2004, 126,
3036. (i) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111,
2981.
In summary, a biomimetic total syntheses of callistrilones
( )-A, B, and D and the postulated biosynthetic intermediate
were achieved in 10, 4, 7, and 2 steps, respectively, with 21, 22,
26, and 65% overall yield using a highly regio- and
diastereoselective Friedel−Crafts alkylation, palladium-cata-
lyzed Wacker-type oxidative cyclization, and stereoselective
epoxide formation from extremely hindered β face as a key
reactions. This method is fairly general to the synthesis of other
natural products of this class as well as their analogues.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(6) (a) Muller, H.; Paul, M.; Hartmann, D.; Huch, V.; Blaesius, D.;
̈
Details of the experimental procedure and character-
ization data for all new compounds (PDF)
Koeberle, A.; Werz, O.; Jauch, J. Angew. Chem., Int. Ed. 2010, 49, 2045.
(b) Charpentier, M.; Hans, M.; Jauch, J. Eur. J. Org. Chem. 2013, 2013,
4078.
Accession Codes
(7) Dethe, D. H. Presented at 21st International Conference on
Organic Synthesis, IIT Bombay, Mumbai, India, Dec 11−16, 2016.
(8) Bhaduri, S.; Khwaja, H.; Khanwalkar, V. J. Chem. Soc., Dalton
Trans. 1982, 445.
(9) Lane, B. S.; Vogt, M.; DeRose, V. J.; Burgess, K. J. Am. Chem. Soc.
2002, 124, 11946.
(10) Bosch, E.; Kochi, J. K. J. Am. Chem. Soc. 1996, 118, 1319.
(11) (a) Pearson, A. J.; Hsu, S.-Y. J. Org. Chem. 1986, 51, 2505.
(b) Magnus, P.; Sane, N.; Fauber, B. P.; Lynch, V. J. Am. Chem. Soc.
2009, 131, 16045.
mentary crystallographic data for this paper. These data can be
contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
‡B.D.D. and S.D. contributed equally.
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX