8309
The hydroximino group of 12 was O-sulfated using a SO –pyridine complex, to yield after
3
aqueous KHCO neutralization the peracetylated form of the glucosinolate. Standard transester-
3
ification conditions finally afforded the target molecule 1, whose spectral data (MS, NMR) were
found to be identical to those measured on a natural sample (Scheme 3).
Scheme 3.
By using the synthetic sequence described above, the structure of the major glucosinolate
extracted from M. oleifera seeds has been unequivocally ascribed. Our methodology appears
versatile enough to consider a possible extension to the building up of many analogues of 1
16
either diversely O-glycosylated or modified on the thio-sugar moiety. This is being currently
investigated in our group.
Acknowledgements
A grant (D.G.) from the French MENRT is acknowledged. We also thank Dr. J. C. Jacquinet
for helpful discussions, Dr. A. Quinsac (CETIOM) and S. Cassel for analytical assistance.
References
1. Fenwick, G. R.; Heaney, R. K.; Mullin, W. J. CRC Crit. Rev. Food Sci. Nutr. 1983, 18, 123–201.
2. Oliveira, J. T. A.; Silveira, S. B.; Vasconcelos, I. M.; Cavada, B. S.; Moreira, R. A. J. Sci. Food Agric. 1999, 79,
8
15–820 and references cited therein.
3. The presence of a 4%-O-acetylated derivative of 1 was also postulated in Moringa peregrina; see Kjaer, A.; Malver,
O.; El Menshawi, B.; Reisch, J. Phytochemistry 1979, 18, 1485–1487.
. Olsen, O.; Sorensen, O. Phytochemistry 1979, 18, 1547–1552.
4
5
6
7
8
. Olsen, O.; Rasmussen, K. W.; Sorensen, O. Phytochemistry 1981, 20, 1857–1861.
. Leuck, M.; Kunz, H. Carbohydr. Res. 1998, 312, 33–34 and references cited therein.
. Visentin, M.; Tava, A.; Iori, R.; Palmieri, S. J. Agric. Food Chem. 1992, 40, 1687–1691.
®
+
1
. [h]=−47 (c 1.0, H O); MS (Ionspray mode): 570 (M−H ); H NMR (250 MHz): l: 1.26 (d, 3H, H-6%), 3.26 (m,
2
1
H, H-5), 3.32–3.48 (m, 3H, H-2, H-3 and H-4), 3.55 (t, 1H, J=9.7, H-4%), 3.64–3.72 (m, 2H, H-6), 3.83 (m, 1H,
H-5%), 4.03 (dd, 1H, J=3.5, H-3%), 4.13 (s, 2H, H-8), 4.20 (dd, 1H, J=1.9, H-2%), 4.74 (m, 1H, H-1), 5.58 (bs, 1H,
13
H-1%), 7.18 (d, 2H, J=8.5, H-11), 7.40 (d, 2H, H-10); C NMR (62.89 MHz): 18.2 (C-6%), 39.0 (C-8), 61.8 (C-6),
7
1
0.2 (C-4), 70.9 (C-5%), 71.5 (C-2%), 71.6 (C-3%), 73.3 (C-2), 73.5 (C-4%), 78.5 (C-3), 82.9 (C-1), 83.4 (C-5), 99.6 (C-1%),
19.1 (C-11), 130.9 (C-9 and C-10), 156.2 (C-12), 164.2 (C-7).
9. For a recent example, see Aucagne, V.; Gueyrard, D.; Tatibou e¨ t, A.; Quinsac, A.; Rollin, P. Tetrahedron 2000,
5
6, 2647–2654.
1
1
1
1
1
1
0. Benn, M. H. Can. J. Chem. 1964, 42, 2393–2397.
1. Bashir, N. B.; Phythian, S. J.; Reason, A. J.; Roberts, S. M. J. Chem. Soc., Perkin Trans. 1 1995, 2203–2222.
2. Veeneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 1331–1334.
3. Gairaud, C. B.; Lappin, G. R. J. Org. Chem. 1953, 18, 1–3.
4. Kumaran, G.; Kulkarni, G. H. J. Org. Chem. 1997, 62, 1516–1520.
5. Cassel, S.; Casenave, B.; D e´ l e´ ris, G.; Latxague, L.; Rollin, P. Tetrahedron 1998, 54, 8515–8524 and references cited
therein.
16. Gardrat, C.; Quinsac, A.; Joseph, B.; Rollin, P. Heterocycles 1993, 35, 1015–1027.