ORGANIC
LETTERS
2003
Vol. 5, No. 9
1491-1494
Regioselective Synthesis of the Tricyclic
Core of Lateriflorone
Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, and
Emmanuel A. Theodorakis*
Department of Chemistry and Biochemistry, UniVersity of California, San Diego,
9500 Gilman DriVe, La Jolla, California 92093-0358
Received February 17, 2003
ABSTRACT
An efficient synthetic approach to the tricyclic core 8 of lateriflorone is described. Essential to the synthesis was the implementation of a
biomimetic tandem Claisen/Diels−Alder reaction that produced the desired tricyclic scaffold as a single isomer. A rationalization of the excellent
regio and stereoselectivity of this transformation is also proposed.
Plants of the genus Garcinia (Guttiferae) are encountered
largely in the tropical rainforests of Indo China, Malaysia,
and Borneo and have been used in traditional medicine for
their wound healing, antibacterial, and cytotoxic activities.1
Efforts to isolate and structurally identify the bioactive
components of these plants have led to a new family of caged
xanthonoids that include morellin (1),2 morellic acid (2),3
scortechinones A and B (3, 4),4 1-O-methylneobractatin (5),5
and lateriflorone (6)6 (Figure 1). The chemical structure of
these natural products is distinguished by the presence of a
remarkable 4-oxa-tricyclo[4.3.1.03,7]decan-2-one scaffold, in
which a highly substituted tetrahydrofuran core with three
quaternary carbon centers is featured. This uncommon caged
structure constitutes an intriguing synthetic target and may
account for the reported biological activities.7 An additional
level of architectural complexity is found in the structure of
lateriflorone (6), in which the tricyclic motif is attached to
an unprecedented spiroxalactone core.
From a biosynthetic point of view,8 the caged scaffold of
these natural products is presumed to derive from a tandem
Claisen/Diels-Alder rearrangement,9,10 implying polypre-
nylated aromatic rings as plausible biosynthetic precursors.
Moreover, two related biosynthetic scenarios were proposed
for the unique spiroxalactone core of lateriflorone (6). The
first is based on an oxidative rearrangement of a xanthone
precursor, while the second rests upon condensation of two
(1) For selected general references on this topic, see: Ollis, W. D.;
Redman, B. T.; Sutherland, I. O.; Jewers, K. J. Chem. Soc., Chem. Commun.
1969, 879-880. Kumar, P.; Baslas, R. K. Herba Hungarica 1980, 19, 81-
91. Thoison, O.; Fahy, J.; Dumontet, V.; Chiaroni, A.; Riche, C.; Tri, M.
V.; Sevenet, T. J. Nat. Prod. 2000, 63, 441-446.
(7) Cao, S.-G.; Sng, V. H. L.; Wu, X.-H.; Sim, K.-Y.; Tan, B. H. K.;
Pereira, J. T.. Goh, S. H. Tetrahedron 1998, 54, 10915-10924. For related
gaudichaudiones, see: Cao, S.-G.; Wu, X.-H.; Sim, K.-Y.; Tan, B. K. H.;
Pereira, J. T.; Wong, W. H.; Hew, N. F.; Goh, S. H. Tetrahedron Lett.
1998, 39, 3353-3356. Wu, X.-H.; Tan, B. K. H.; Cao, S.-G.; Sim, K.-Y.;
Goh, S. H. Nat. Prod. Lett. 2000, 14, 453-458.
(2) Rao, B. S. J. Chem. Soc. C 1937, 853-857. Kartha, G.; Ramachan-
dran, G. N.; Bhat, H. B.; Nair, P. M.; Raghavan, V. K. V.; Venkataraman,
K. Tetrahedron Lett. 1963, 4, 459-472.
(3) Karanjgaongar, C. G.; Nair, P. M.; Venkataraman, K. Tetrahedron
Lett. 1966, 7, 687-691.
(4) Rukachaisirikul, V.; Kaewnok, W.; Koysomboon, S.; Phongpaichit,
S.; Taylor, W. C. Tetrahedron 2000, 56, 8539-8543.
(8) Bennett, G. J.; Lee, H.-H. J. Chem. Soc., Chem. Commun. 1988, 619-
620. Roberts, J. C. Chem. ReV. 1961, 61, 591-605.
(5) Thoison, O.; Fahy, J.; Dumontet, V.; Chiaroni, A.; Riche, C.; Tri,
M. V.; Se´venet, T. J. Nat. Prod. 2000, 63, 441-446.
(9) Quillinan, A. J.; Scheinmann, F. J. Chem. Soc., Chem. Commun. 1971,
966-967.
(6) Kosela, S.; Cao, S.-G.; Wu, X.-H.; Vittal, J. J.; Sukri, T.; Masdianto;
Goh, S.-H.; Sim, K.-Y. Tetrahedron Lett. 1999, 40, 157-160.
(10) For a recent demonstration of this tandem rearrangement, see:
Nicolaou, K. C.; Li, J.; Angew. Chem., Int. Ed. 2001, 40, 4264-4268.
10.1021/ol034276y CCC: $25.00 © 2003 American Chemical Society
Published on Web 04/01/2003