C O M M U N I C A T I O N S
gold(I)-catalyzed rearrangements of strained ring systems are
ongoing in our laboratories.
Acknowledgment. We gratefully acknowledge the University
of California, Berkeley, NIHGMS (R01 GM073932-01) Merck
Research Laboratories, Bristol-Myers Squibb, Amgen Inc., DuPont,
GlaxoSmithKline, and Eli Lilly & Co. for financial support.
olefin geometry of the resulting alkylidene cycloalkanes11 and the
selective migration of more substituted cycloalkanol carbons is most
consistent with mechanistic hypothesis a. Gold(I)-catalyzed re-
arrangement of substituted cyclopropanols 34a-d further supports
mechanism a and provides insight into the stereoelectronic demands
of ring expansion (eq 2). Consistent with the expected migratory
aptitude, gold(I)-catalyzed rearrangement of 34a afforded only 35a.
Increasing the size of the alkynyl substituent to phenyl in 34b
produced a decrease in the selectivity presumably as a result of an
increase in A1,3 strain between the R1 and R groups in proposed
transition state A. This interaction is more pronounced between R2
and R as demonstrated in the ring expansion of 34c, which
selectively furnished cyclobutanol 36c derived from migration of
the less substituted carbon.12 In accord with this hypothesis, reaction
of terminal alkyne 34d favors migration of the more substituted
carbon as a result of a decrease in A1,3 strain between R2 and R in
transition state A.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
(1) (a) Hudlicky, T.; Reed, J. W. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: London, 1991; Vol. 5; p 899.
(b) Hudlicky, T.; Kutchan, T. M.; Naqvi, S. M. Org. React. 1985, 33,
247. (c) Trost, B. M. Top. Curr. Chem. 1986, 133, 3. For an enantio-
selective rearrangement of vinylcycloalkanols, see: (d) Trost, B. M.;
Yasukata, T. J. Am. Chem. Soc. 2001, 123, 7162.
(2) Pd(II)-catalyzed: (a) Liebeskind, L. S.; Mitchell, D.; Foster, B. S. J. Am.
Chem. Soc. 1987, 109, 7908. Pd(II)/Hg(II)-catalyzed: (b) Liebeskind, L.
S.; Bombrum, A. J. Org. Chem. 1994, 59, 1149. Mn(III)-mediated: (c)
Snider, B. B.; Vo, N. H.; Foxman, B. M. J. Org. Chem. 1993, 58, 7228.
(3) Co(0)-catalyzed expansion of 1-alkynylcyclopropanols affords cyclopen-
tenones and, in some cases, small amounts of the alkylidenecyclo-
butanone: (a) Iwasawa, N.; Matsuo, T.; Iwamoto, M.; Ikeno, T. J. Am.
Chem. Soc. 1998, 120, 3903. (b) Iwasawa, N.; Narasaka, K. Top. Curr.
Chem. 2000, 207, 69.
(4) (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998,
37, 1415. (b) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5,
3349. (c) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem.,
Int. Ed. 2002, 41, 4563.
(5) (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 4526. (b) Nieto-Oberhuber, C.; Mun˜oz, M. P.; Bun˜uel, E.;
Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed.
2004, 43, 2402. (c) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J.
Am. Chem. Soc. 2004, 126, 8654. (d) Luzung, M. R.; Markham, J. P.;
Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858. (e) Staben, S. T.;
Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2004, 43, 5350.
(f) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 11806. (g)
Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978. (h) Nieto-
Oberhuber, C.; Lo´pez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005,
127, 6178. (i) For an excellent review of homogeneous gold-catalyzed
reactions, see: Hashmi, A. S. K. Gold Bull. 2004, 37, 51.
(6) For reviews of Ag(I)-catalyzed rearrangement of strained σ-bonds, see:
(a) Paquette, L. A. Acc. Chem. Res. 1971, 4, 281. (b) Bishop, K. C., III.
Chem. ReV. 1976, 76, 461. For Au-catalyzed rearrangement of small ring
hydrocarbons, see: (c) Meyer, L. U.; de Meijere, A. Tetrahedron Lett.
1976, 497.
(7) Yield of 2 after treatment of 1 for 24 h with other catalysts: (CH3CN)4Pd-
(BF4)2 0%, Pd(O2CCF3)2 8% ((Z)-2), PtCl2 0%, PtCl4/AgSbF6 9%, AgSbF6
3%, AuCl3/AgOTf 4%, HBr 0%. See also: Wasserman, R. E.; Cochoy,
R. E.; Baird, M. S. J. Am. Chem. Soc. 1969, 91, 2376.
(8) Under identical reaction conditions, Au(I)-catalyzed reaction of non-
terminal alkynylcyclobutanols produced complex mixtures.
(9) For stoichiometric formation of triphenylphosphinegold(I)-homoenolates
from cyclopropanols, see: Murakami, M.; Inouve, M.; Suginome, M.;
Ito, Y. Bull. Chem. Soc. Jpn. 1988, 61, 3649. In accord with this report,
we found that 3 catalyzed the rearrangement of vinylcyclopropanol 42 to
ketone 43.
Additionally, gold(I)-catalyzed ring expansion is stereospecific
with respect to the migrating carbon (eq 3). cis-Dimethylcyclo-
propane 37a quantitatively afforded cis-cyclobutanone 38a, while
trans-dimethylcyclopropane 37b gave only trans-cyclobutanone 38b
in 94% yield. Benzylidenecyclobutanone 38a was then converted
into cyclobutanol 39 in two steps. Gold(I)-catalyzed ring expansion
of 39 also proceeded stereoselectively to afford a 3.7:1 mixture of
cyclopentanones 40 and 41 in 88% yield (eq 4).
(10) A related mechanism has been proposed for formation of methylidene
cyclopentanones by Pd(II)-catalyzed rearrangement of a vinylcyclo-
butanols. See: Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc.
1999, 121, 2645.
(11) Consistent with the kinetic formation of (E)-alkenes, olefin geometry in
cyclobutanone 44 is not isomerized under the reaction conditions.
In conclusion, we have developed a gold(I)-catalyzed ring
expansion of 1-alkynylcyclobutanols and cyclopropanols to alkyl-
idenecycloalkanones. The reaction stereoselectively provides a
single olefin isomer and is stereospecific with regard to substituents
on the ring. Thus, a sequence involving two gold(I)-catalyzed ring
expansion reactions allows for the stereoselective preparation of a
highly substituted cyclopentanone.13 A mechanism involving migra-
tion of a carbon-carbon σ-bond onto a gold(I)-activated alkyne
accounts for the observed stereoselectivity and migratory aptitude
in substituted cycloalkanols. Efforts aimed at further exploiting
(12) For an example of reversal of migratory aptitude in ring expansion due
to inductive effects, see: Trost, B. M.; Ornstein, P. L. J. Org. Chem.
1985, 48, 1133.
(13) For recent approaches to highly substituted cyclopentanones from vinyl
cyclopropanes, see: (a) Navseschuk, C. G.; Rovis, T. Angew. Chem., Int.
Ed. 2005, 44, 3264. (b) Davies, H. M. L.; Xiang, B.; Kong, N.; Stafford,
D. G. J. Am. Chem. Soc. 2001, 123, 7461.
JA052831G
9
J. AM. CHEM. SOC. VOL. 127, NO. 27, 2005 9709