10.1002/anie.202008896
Angewandte Chemie International Edition
COMMUNICATION
[1]
a) M. D. Karkas, O. Verho, E. V. Johnston, B. Åkermark, Chem. Rev.
(Washington, DC, US) 2014, 114, 11863-12001. b) R. Matheu, P.
Garido-Barros, M. Gil-Sepulcre, M. Z. Ertem, X. Sala, C. Gimbert-
Surinach, A. Llobet, Nat. Rev. Chem. 2019, 3, 331-341. c) J. D.
Blakemore, R. H. Crabtree, G. W. Brudvig, Chem. Rev. (Washington, DC,
US) 2015, 115, 12974-13005. d) B. Zhang, Sun, L., J. Am. Chem. Soc.
2019, 141, 5565-5580. (e) L. Francàs, R. Bofill, J. García‐Antón, L.
Escriche, X. Sala, A. Llobet, In Molecular Water Oxidation Catalysis;
John Wiley & Sons, 2014; 29.
[13] L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L.
Sun, Nature Chem. 2012, 4, 418-423.
[14] See Supporting Information p. S19 for a discussion of the relationships
between proton activity and concentration, that are especially important
to take into account for strong acid media.
[15] Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker, R.
Schlögl, Catal. Today 2017, 295, 32.
[16] Only relatively low concentrations of 3 (0.125 mM) can be achieved in
aqueous solvents with buffer, hence we normalize current density on a
mM basis to compare various catalysts. We note that in the absence of
buffer ions, e.g. in Raman and EPR studies, 1 to 2 mM concentrations
can be achieved.
[2]
a) J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao, M. Ni, ACS Catal. 2019, 9,
9973-10011. b) M. Blasco-Ahicart, J. Soriano-Lopez, J. J. Carbo, J. M.
Poblet, J. R. Galan-Mascaros, Nature Chem. 2018, 10, 24-30. c) N.
Mamaca, E. Mayousse, S. Arrii-Clacens, T. W. Napporn, K. Servat, N.
Guillet, K. B. Kokoh, Applied Catalysis B: Environmental 2012, 111–112,
376-380.
[17] D. J. Wasylenko, C. Ganesamoorthy, M. A. Henderson, C. P.
Berlinguette, Inorg. Chem. 2011, 50, 3662-3672.
[18] a) Z. Codola, L. Gomez, S. T. Kleespies, L. Que, Jr., M. Costas, J. Lloret-
Fillol, Nature Commun. 2015, 6, 5865. b) M. Sankaralingam, Y.-M. Lee,
Y. Pineda-Galvan, D. G. Karmalkar, M. S. Seo, S. H. Jeon, Y. Pushkar,
S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 2019, 141, 1324-1336, and
references therein.
[3]
[4]
a) M. H. V. Huynh, T. J. Meyer, Chem. Rev. 2007, 107, 5004-5064. b) T.
J. Meyer, M. H. V. Huynh, H. H. Thorp, Angew. Chem., Int. Ed. 2007, 46,
5284-5304; Angew. Chem. 2007, 119, 5378-5399.
a) R. Matheu, M. Z. Ertem, J. Benet-Buchholz, E. Coronado, V. S.
Batista, X. Sala, A. Llobet, J. Am. Chem. Soc. 2015, 137, 10786-10795.
b) R. Matheu, R.; M. Z. Ertem, M. Pipelier, J. Lebreton, D. Dubreuil, J.
Benet-Buchholz, X. Sala, A. Tessier, A. Llobet, ACS Catal. 2018, 8,
2039-2048.
[19] a) M. Puri, A. N. Biswas, R. Fan, Y. Guo, L. Que, J. Am. Chem. Soc.
2016, 138, 2484-2487. b) S. Meyer, I. Klawitter, S. Demeshko, E. Bill, F.
A. Meyer, Angew. Chem. Int. Ed. 2013, 52, 901-905; Angew. Chem.
2013, 125, 935-939.
[5]
[6]
a) D. W. Shaffer, Y. Xie, D. J. Szalda, J. J. Concepcion, J. Am. Chem.
Soc. 2017, 139, 15347-15355. b) Y. Xie, D. W. Shaffer, A.
Lewandowska-Andralojc, D. J. Szalda, J. J. Concepcion, Angew. Chem.
Int. Ed. 2016, 55, 8067-8071; Angew. Chem. 2016, 128, 8199-8203. c)
J. M. Kamdar, D. C. Marelius, C. E. Moore, A. L. Rheingold, D. K. Smith,
D. B. Grotjahn, ChemCatChem 2016, 8, 3045-3049.
[20] a) Y. Shimoyama, T. Ishizuka, H. Kotani, Y. Shiota, K. Yoshizawa, K.
Mieda, T. Ogura, T. Okajima, S. Nozawa, T. A. Kojima, Angew. Chem.
Int. Ed. 2016, 55, 14041-14045; Angew. Chem. 2016, 128, 14247-14251.
b) Review: T. Ishizuka, H. Kotani, T. Kojima Dalton Trans. 2016, 45,
16727-16750. c) Y. Hirai, T. Kojima, Y. Mizutani, Y. Shiota, K. Yoshizawa,
S. Fukuzumi, Angew. Chem., Int. Ed. 2008, 47, 5772-5776; Angew.
Chem. 2008, 120, 5856-5860. d) S. Ohzu, T. Ishizuka, Y. Hirai, H. Jiang,
M. Sakaguchi, T. Ogura, S. Fukuzumi, T. Kojima, Chem. Sci. 2012, 3,
3421-3431. e) Y. Pushkar, D. Moonshiram, V. Purohit, L. Yan, I.
Alperovich, J. Am. Chem. Soc. 2014, 136, 11938-11945.
[21] I. Azcarate, C. Costentin, M. Robert, J.-M. Savéant, J. Am. Chem. Soc.
2016, 138, 16639−16644.
a) K. J. Takeuchi, M. S. Thompson, D. W. Pipes, T. J. Meyer, Inorg.
Chem. 1984, 23, 1845-1851. b) S. Masaoka, K. Sakai, Chem. Lett. 2009,
38, 182-183. c) H.-W. Tseng, R. Zong, R. J. T. Muckerman, R. P.
Thummel, Inorg. Chem. 2008, 47, 11763-11773.
[7]
[8]
H. N. Kagalwala, L Tong, R. Zong, L. Kohler, M. S. G. Ahlquist, T. Fan,
T. K. J. Gagnon, R. P. Thummel, ACS Catal. 2017, 7, 2607-2615.
a) The remarkable catalysts developed by Llobet’s group, in which
ligands like the ONNO ligand of 4 are replaced with expanded ONNNO
analogs, were not considered here for a study of catalysis in acid,
because the oxidized intermediate is reported to be quite stable in
acid.[4a] b) Recent results from Pushkar’s group (A. K. Ravari, G. Zhu, R.
Ezhov, Y. Pineda-Galvan, A. Page, W. Weinschenk, L. Yan, Y. Pushkar,
J. Am. Chem. Soc. 2020, 142, 884-893) show that 1a is initially oxidized
to a bipyiridine-N-oxide complex; the rigidity of phenanthroline in 3 should
hinder such a process.
…
[9]
a) N. Song, J. J. Concepcion, R. A. Binstead, J. A. Rudd, A. K. Vannucci,
C. J. Dares, M. K. Coggins, T. J. Meyer, Proc. Nat. Acad. Sci. USA 2015,
112, 4935-4940. b) Z. Chen, J. J. Concepcion, X. Hu, W. Yang, P. G.
Hoertz, T. J. Meyer, Proc. Nat. Acad. Sci. USA 2010, 107, 7225-7229.
[10] a) J. M. Koelewijn, M. Lutz, W. I. Dzik, R. J. Detz, J. N. H. Reek, ACS
Catal. 2016, 6, 3418-3427. b) M. Yoshida, M. Kondo, S. Torii, K. Sakai,
S. Masaoka, Angew. Chem. Int. Ed. 2015, 54, 7981-7984; Angew. Chem.
2015, 127, 8092-8095. c) L. Duan, L. Wang, A. K. Inge, A. Fischer, X.
Zou, L. Sun, Inorg. Chem. 2013, 52, 7844-7852. d) S. Neudeck, S. Maji,
I. Lopez, S. Meyer, F. Meyer, A. Llobet, J. Am. Chem. Soc. 2014, 136,
24-27. e) B. Yang, X. Jiang, Q. Guo, T. Lei, L.-P. Zhang, B. Chen, C.-H.
Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2016, 55, 6229-6234; Angew.
Chem. 2016, 128, 6337-6342. f) F. Yu, D. I. Poole, S. Mathew, N. Yan,
J. Hessels, N. Orth, I. Ivanovic-Burmazovic, J. N. H. Reek, Angew. Chem.
Int. Ed. 2018, 57, 11247-11251; Angew. Chem. 2018, 130, 11417-11421.
g) Sulfonate groups remote from the active site have also been used
recently to direct metal-catalyzed CH borylation reactions, e.g. H. J.
Davis, M. T. Mihai, R. J. Phipps, J. Am. Chem. Soc. 2016, 138, 12759-
12762.
[11] E. Besthorn, B. Geiβelbrecht, B. Ber. 1920, 53, 1017-1033.
[12] CCDC 2012325 (3) contain the supplementary crystallographic data for
this paper. These data are provided free of charge by the joint Cambridge
Crystallographic Data Centre and Fachinformationszentrum Karlsruhe
5
This article is protected by copyright. All rights reserved.