76
X. Xue et al. / Catalysis Communications 29 (2012) 73–76
Scheme 2. Proposed mechanism for oxidation of sulfides with [(C18H37)2(CH3)2N]7[PW11O39].
[9] R. Noyori, M. Aoki, K. Sato, Chemical Communications 39 (2003) 1977.
[10] B.Y. Zhang, Z.X. Jiang, J. Li, Y.N. Zhang, F. Lin, Y. Liu, C. Li, Journal of Catalysis 287
(2012) 5.
Although the catalyst after the first recycle changed compared with
the fresh one, it did not change anymore from the second cycle on.
[11] X.C. Chen, D.D. Song, C. Asumana, G.R. Yu, Journal of Molecular Catalysis A: Chemical
359 (2012) 8.
[12] A.M. Cojocariu, P.H. Mutin, E. Dumitriu, F. Fajula, A. Vioux, V. Hulea, Chemical
Communications 44 (2008) 5357.
4. Conclusions
In summary, a [(C18H37)2(CH3)2N]7PW11O39/H2O2/1,4-dioxane/
sulfides catalytic oxidation system has been developed, which
achieves complete oxidation of a series of sulfides to their corresponding
sulfones in a short time and mild conditions. The polyoxometalate-based
catalyst behaved as solid–liquid–solid phase transfer controlled by tem-
perature under the catalytic conditions. It can be recycled for several
times without obvious loss of activity. This process was considered
to be a potential way in oxidative desulfurization. It is just a study
of models of a real sample of fuel, and that further experiments will
be conducted to demonstrate that the catalyst operates and can be
retrieved from a real fuel sample.
[13] Y.M. Fang, H.Q. Hu, Catalysis Communications 8 (2007) 817.
[14] V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Applied Catalysis A: General 313
(2006) 200.
[15] A.L. Maciuca, C.E. Ciocan, E. Dumitriu, F. Fajula, V. Hulea, Catalysis Today 138
(2008) 33.
[16] S.P. Das, J.J. Boruah, N. Sharma, N.S. Islam, Journal of Molecular Catalysis A: Chemical
356 (2012) 36.
[17] K. Kamata, T. Hirano, R. Ishimoto, N. Mizuno, Dalton Transactions 39 (2010) 5509.
[18] G.B. Shulpin, G.S. Fink, L.S. Shulpina, Journal of Molecular Catalysis A: Chemical
170 (2001) 17.
[19] Y. Wang, J.H. Espenson, Journal of Organic Chemistry 65 (2000) 104.
[20] D.L. Long, R. Tsunashima, L. Cronin, Angewandte Chemie International Edition 49
(2010) 1736.
[21] Z.Q. Huang, Z. Luo, Y.V. Geletii, J.W. Vickers, Q.S. Yin, D. Wu, Y. Hou, Y. Ding, J. Song,
D.G. Musaev, C.L. Hill, T.Q. Lian, Journal of the American Chemical Society 133 (2011)
2068.
Acknowledgements
[22] K. Kamata, M. Kotani, K. Yamaguchi, S. Hikichi, N. Mizuno, Chemistry - A European
Journal 13 (2007) 639.
[23] H.Y. Lv, J.B. Gao, Z.X. Jiang, F. Jing, Y.X. Yang, G. Wang, C. Li, Journal of Catalysis 239
(2006) 369.
[24] H.Y. Lv, Y.N. Zhang, Z.X. Jiang, C. Li, Green Chemistry 12 (2010) 1954.
[25] J.H. Xu, S. Zhao, W. Chen, M. Wang, Y.F. Song, Chemistry - A European Journal 18
(2012) 4775.
[26] W.S. Zhu, W.L. Huang, H.M. Li, M. Zhang, W. Jiang, G.Y. Chen, C.R. Han, Fuel
Processing Technology 92 (2011) 1842.
[27] Z.X. Zhang, F.W. Zhang, Q.Q. Zhu, W. Zhao, B.C. Ma, Y. Ding, Journal of Colloid and
Interface Science 360 (2011) 189.
[28] N.M. Okun, J.C. Tarr, D.A. Hilleshiem, L. Zhang, K.I. Hardcastle, C.L. Hill, Journal of
Molecular Catalysis A: Chemical 246 (2006) 11.
[29] Y. Ding, W. Zhao, Journal of Molecular Catalysis A: Chemical 337 (2011) 45.
[30] W. Zhao, Y. Ding, Z.X. Zhang, B.C. Ma, W.Y. Qiu, Reaction Kinetics and Mechanics
Catalysis 102 (2011) 93.
[31] R.G. Finke, M.W. Droege, P.J. Domaille, Inorganic Chemistry 26 (1987) 3886.
[32] E. Radkov, R.H. Beer, Polyhedron 15 (1995) 2139.
[33] C. Venturello, R.D. Aloisio, Journal of Organic Chemistry 53 (1988) 1553.
[34] J.B. Gao, Y.Y. Chen, B. Han, Z.C. Feng, C. Li, N. Zhou, S. Gao, Z.W. Xi, Journal of
Molecular Catalysis A: Chemical 210 (2004) 197.
This work was financially supported by the National Natural Science
Foundation of China (grant nos. 20803032 and 21173105).
Appendix A. Supplementary data
Supplementary data to this article can be found online at http://
References
[1] T. Yamaura, K. Kamata, K. Yamaguchi, N. Mizuno, Catalysis Today (2012), http:
[2] M. Bagherzadeh, M.M. Haghdoost, M. Amini, P.G. Derakhshandeh, Catalysis Com-
munications 23 (2012) 14.
[3] L. Xu, J. Cheng, M.L. Trudell, The Journal of Organic Chemistry 68 (2003) 5388.
[4] O.D. Lucchi, D. Fabbri, V. Lucchini, Tetrahedron 48 (1992) 1485.
[5] S. Gronowitz, G. Nikitidis, A. Hallberg, R. Servin, The Journal of Organic Chemistry
58 (1988) 3351.
[6] M. Ciclosi, C. Dinoi, L. Gonsalvi, M. Peruzzini, E. Manoury, R. Poli, Organometallics
27 (2008) 2281.
[35] Y. Ding, B.C. Ma, D.J. Tong, H. Hua, W. Zhao, Australian Journal of Chemistry 62
(2009) 739.
[36] W. Zhao, B.C. Ma, H. Hua, Y. Zhang, Y. Ding, Catalysis Communications 9 (2008)
2455.
[7] M.K. Panda, M.M. Shaikh, P. Ghosh, Dalton Transactions 39 (2010) 2428.
[8] M.A. Rezvani, A.F. Shojaie, M.H. Loghmani, Catalysis Communications 25 (2012) 36.