LETTER
A Convergent Approach to Hydroxylamines, Hydrazines and Related Structures
905
The xanthate group, in the preceding examples was re- hydroxylamine 26 in 70% crude yield. Some decomposi-
moved for convenience. More densely functionalized tion occurred upon purification by distillation.
structures may be constructed by omitting the reduction
step. For instance, reaction of xanthate 20 with protected
allyl hydrazine 2b afforded the corresponding addition
In summary, we have described a simple, yet highly effi-
cient and flexible route to a variety of hydroxylamine and
hydrazine derivatives, many of which would be difficult
product 21, which underwent acid mediated deprotection
and double ring closure to furnish bicyclic pyrazolone 22
in a useful overall yield (Scheme 4). It is interesting to
note that the formation of compound 21 represents ulti-
mately an elongation at position 4 of ethyl acetoacetate,
performed under neutral conditions. Using ionic chemis-
try, the creation of new C–C bonds at this position re-
quires the prior formation of either the strongly basic
dianion of the acetoacetate or the bis-(silyl enol ether) un-
10
to obtain by more conventional methods. The reagents
are cheap and readily available, and the reaction condi-
tions sufficiently mild to tolerate many of the functional
groups encountered in modern organic synthesis.
References
(
1) (a) Surnam, M. D.; Miller, M. J. J. Org. Chem. 2001, 66,
2466; and numerous references there cited. (b) Miller, M. J.
Chem. Rev. 1989, 89, 1563. (c) Michaelides, M. R.; Curtin,
M. L. Curr. Pharm. Des. 1999, 5, 787. (d) Nikam, S. S.;
Kornberg, B. E.; Johnson, D. R.; Doherty, A. M.
9
der Lewis acid catalysis. Xanthate 20, trivially made by
displacing the chloride from commercially available ethyl
4
-chloroacetoacetate with potassium O-ethyl xanthate, is
Tetrahedron Lett. 1995, 36, 197. (e) Karunartne, V.;
Hoveyda, H. R.; Orvig, C. Tetrahedron Lett. 1992, 33,
thus a very convenient reagent, which complements by its
reactivity the more common ionic processes.
1827. (f) Schwartz, B. D.; De Voss, J. J. Tetrahedron Lett.
2001, 42, 3653. (g) Sato, T.; Takebayashi, Y.; Tokunaga, T.;
Ozasa, T. J. Antibiot. 1996, 49, 811.
(
2) (a) Wroblonsky, H.-J.; Andree, R.; Kluth, J. F. In Methoden
der Organischen Chemie (Houben-Weyl), Vol. E16a;
Klamann, D., Ed.; Georg Thieme Verlag: Stuttgart, 1990, 1.
(
b) Jensen-Korte, U.; Müller, N. In Methoden der
Organischen Chemie (Houben-Weyl), Vol. E16a; Klamann,
D., Ed.; Georg Thieme Verlag: Stuttgart, 1990, 421.
(
3
c) Chang, Z.-Y.; Coates, R. M. J. Org. Chem. 1990, 55,
464. (d) Merino, P.; Lanaspa, A.; Merchan, F. L.; Tejero, T.
J. Org. Chem. 1996, 61, 9028; and references there cited.
3) (a) Zard, S. Z. Angew.Chem., Int. Ed. Engl. 1997, 36, 672.
(
(
(
b) Quiclet-Sire, B.; Zard, S. Z. Phosphorus, Sulfur, Silicon
1999, 153. (c) Zard, S. Z. Angew.Chem., Int. Ed. Engl. 1997,
36, 137. (d) Zard, S. Z. J. Chin. Chem. Soc. 1999, 46, 139.
(
e) For addition of xanthates to allyl amines, see: Boivin, J.;
Pothier, J.; Zard, S. Z. Tetrahedron Lett. 1999, 40, 3701.
4) (a) Staszak, M. A.; Doecke, C. W. Tetrahedron Lett. 1993,
34, 7043. (b) Mellor, S. L.; Chan, W. C. Chem. Commun.
1997, 2005. (c) Genet, J. P.; Thorimbert, S.; Touzin, A. M.
Tetrahedron Lett. 1993, 34, 1159. (d) Maëorg, U.;
Ragnarsson, U. Tetrahedron Lett. 1998, 39, 681.
5) (a) Ramon, F.; Degueil-Castaing, M.; Maillard, B. J. Org.
Chem. 1996, 61, 2071. (b) Ramon, F.; Degueil-Castaing,
M.; Maillard, B. Tetrahedron 1998, 54, 11489; and
references there cited.
(
(
6) Liard, A.; Quiclet-Sire, B.; Saicic, R. N.; Zard, S. Z.
Tetrahedron Lett. 1997, 38, 1759.
(
(
7) Smith, P. A. S.; Pars, H. G. J. Org. Chem. 1959, 24, 1325.
8) For some examples see: (a) Kane, J. M.; Stewart, K. T. J.
Heterocycl. Chem. 1988, 25, 1471. (b) Kalyanam, K. G.;
Likhate, M. A. Synth. Commun. 1988, 18, 2183.
(
c) Zimmerman, H. E.; Eberbach, W. J. Am. Chem. Soc.
973, 95, 3970.
9) (a) Huckin, S. N.; Weiler, L. J. Am. Chem Soc. 1974, 96,
082. (b) Chan, T.-H.; Brownbridge, P. J. Chem. Soc.,
1
Scheme 4 (i) Lauroyl peroxide (15–40 mol%), (CH Cl) , reflux.
2
2
(
(
ii) TFA, (CH Cl) , reflux.
2 2
1
Chem. Commun. 1979, 578. (c) Hagiwara, H.; Kimura, K.;
Uda, H. J. Chem. Soc., Perkin Trans. 1 1992, 693.
10) Typical Procedure for 19: Lauroyl peroxide (10–15 mol%)
was added portion-wise (in 3–4 portions over several hours)
to a degassed, refluxing solution of 800 mg (2 mmol) of
xanthate 16 and 1.1 g (4.0 mmol) of olefin 2b in 2 mL of
Finally, the expedient generation and capture of a com-
plex nitrone is illustrated by the second example in
Scheme 3. Addition of xanthate 23 to olefin 2a proceeded
efficiently to adduct 24 in 81% yield. Deprotection with
trifluoroacetic acid was followed by spontaneous cyclisa-
tion to nitrone 25, which was not isolated but trapped by
addition of diethyl acetylenedicarboxylate to give bicyclic
(
1,2-dichloroethane under argon. The reaction was regularly
monitored for the disappearance of the starting material by
thin layer chromatography. Upon completion, the solvent
Synlett 2002, No. 6, 903–906 ISSN 0936-5214 © Thieme Stuttgart · New York