Organometallics 2007, 26, 6263-6267
6263
Reversible Formation of Organyl(oxo)boranes (RBO) (R ) C H or
6
5
CH ) from Boroxins ((RBO) ): A Matrix Isolation Study
3
3
Holger F. Bettinger*
Lehrstuhl f u¨ r Organische Chemie II, Ruhr-UniVersit a¨ t Bochum, UniVersit a¨ tsstrasse 150,
4780 Bochum, Germany
4
ReceiVed NoVember 17, 2006
Flash vacuum pyrolysis of triphenyl- and trimethylboroxin and subsequent trapping of the gas phase
products in a large excess of argon at T < 20 K allows matrix isolation and characterization by IR
spectroscopy of phenyl(oxo)borane and methyl(oxo)borane. The nature of the matrix isolated species,
monomeric CH
3 3 3 2 3 3
BO, 1:1 dimer complex of CH BO, (CH BO) , and (CH BO) , depends strongly on the
trapping temperature and matrix host gas (Ar vs Xe) with the boroxin dominating at 30 K (Ar) or 55 K
(
Xe). An ab initio investigation (second-order Møller-Plesset perturbation theory) of the potential energy
surface for trimerization of CH
3
BO is in agreement with the experimental observations.
Introduction
due to the kinetic and thermodynamic instability of 1 toward
1
6,17
trimerization (Scheme 1).
Oxoboranes XBO are fundamental yet highly elusive boron
compounds. Inorganic derivatives of XBO, X ) H, N, O, F,
Organoboroxins have been structurally characterized18-20 and
1
are rather stable compounds under anhydrous conditions (e.g.,
Cl, Br, or I, have been obtained previously by reaction of either
the boron halides with B2O3 at temperatures exceeding 1000 K
or by co-condensation of boron atoms with small molecules
they form 1:1 complexes with nitrogen bases without degrada-
21,22
tion of the six-membered heterocyclic ring),
and their
thermal decomposition is reported to go along with the
(
H2O, O2, or NO).2-9 Such techniques are clearly not suitable
23
degradation of the organic ligands. Consequently, other routes
for the generation of organyl(oxo)boranes (RBO) (1; R )
organyl), the monomeric anhydrides of the boronic acids 2.
These are invaluable reagents in modern organic synthesis (e.g.,
in the Suzuki10 cross-coupling reactions) and are currently
receiving increased interest as molecular building blocks in
to 1 were sought, and the methyl-1,3,2-diborolane-4,5-dione (4)
proved useful. After the mass spectrometric detection of 1b (R
16
)
Me) in 1977, the first direct spectroscopic characterization
of an oxoborane 1b in the pyrolysis mixture of 4 was achieved
24
by Bock et al. using photoelectron spectroscopy (Scheme 2).
crystal engineering as they combine both hydrogen bonding and
As organic groups larger than a methyl group resulted in
insoluble derivatives of 4 which lack the necessary volatility
for gas phase experiments, no organyl(oxo)boranes other than
Lewis acidic motifs.1
1-13
As compared to boronic acids, the
dicoordinated boron center in 1 is expected to show increased
Lewis acidity, while the oxygen atom should still be able to
act as a hydrogen bond acceptor. Such aspects of the chemistry
of 1 have never been investigated due to the lack of generally
applicable access to these systems. A straightforward route,
1b have been studied by direct spectroscopic techniques to date.
Lanzisera and Andrews characterized 1b by IR spectroscopy
as one of the products of the reaction of boron atoms with
25
methanol under the conditions of matrix isolation. A number
14,15
dehydration of 2, yields the trimeric boroxins 3 instead of 1,
of trapping experiments have furnished additional evidence for
2
6,27
the existence of RBO (R ) 2,4,6-tri-t-butylphenyl,
2,4,6-
28
29
*
Corresponding
holger.bettinger@ruhr-uni-bochum.de.
1) K o¨ ster, R. In Houben-Weyl, OrganoborVerbindungen I; K o¨ ster, R.,
Ed.; Georg Thieme Verlag: Stuttgart, 1982; Vol. 13/3a, p 6.
author.
Tel.:
49-234-32-14353;
e-mail:
tris[bis(trimethylsilyl)methyl]phenyl, or C(SiMe3)3 ) as reac-
tive intermediates since the mid-1980s, while the detection of
C2BO and C4BO from (CH3)3Si-(CtC)n-B(O-iPr)2 (n ) 1 or
(
(
(
(
(
2) Snelson, A. High Temp. Sci. 1972, 4, 141.
3) Snelson, A. High Temp. Sci. 1972, 4, 318.
4) Andrews, L.; Burkholder, T. R. J. Phys. Chem. 1991, 95, 8554.
5) Zhou, M.; Tsumori, N.; Xu, Q.; Kushto, G. P.; Andrews, L. J. Am.
(16) Paetzold, P. I.; Scheibitz, W.; Scholl, E. Z. Naturforsch., B: Chem.
Sci. 1971, 26, 646.
(17) Paetzold, P.; Bohm, P.; Richter, A.; Scholl, E. Z. Naturforsch., B:
Chem. Sci. 1976, 31, 754.
Chem. Soc. 2003, 125, 11371.
(
(
81.
6) Burkholder, T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697.
7) Kawaguchi, K.; Endo, Y.; Hirota, E. J. Mol. Spectrosc. 1982, 93,
(18) Bauer, S. H.; Beach, J. Y. J. Am. Chem. Soc. 1941, 63, 1394.
(19) Boese, R.; Polk, M.; Bl a¨ ser, D. Angew. Chem. 1987, 99, 239; Angew.
Chem., Int. Ed. Engl. 1987, 26, 245.
3
1
1
(
8) Kawashima, Y.; Kawaguchi, K.; Endo, Y.; Hirota, E. J. Chem. Phys.
(20) Brock, C. P.; Minton, R. P.; Niedenzu, K. Acta Crystallogr., Sect.
C: Cryst. Struct. Commun. 1987, 43, 1775.
987, 87, 2006.
(9) Hunt, N. T.; R o¨ pcke, J.; Davies, P. B. J. Mol. Spectrosc. 2000, 204,
(21) Yalpani, M.; Boese, R. Chem. Ber. 1983, 116, 3347.
(22) Yalpani, M.; K o¨ ster, R. Chem. Ber. 1988, 121, 1553.
(23) Nencetti, G.; Nardini, G.; Zanelli, S. Energia Nucl. 1964, 11, 248.
(24) Bock, H.; Cederbaum, L. S.; von Niessen, W.; Paetzold, P.; Rosmus,
P.; Solouki, B. Angew. Chem. 1989, 101, 77; Angew. Chem., Int. Ed. Engl.
1989, 28, 88.
(25) Lanzisera, D. V.; Andrews, L. J. Phys. Chem. A 1997, 101, 1482.
(26) Pachaly, B.; West, R. J. Am. Chem. Soc. 1985, 107, 2987.
(27) Groteklaes, M.; Paetzold, P. Chem. Ber. 1988, 121, 809.
(28) Ito, M.; Tokitoh, N.; Okazaki, R. Tetrahedron Lett. 1997, 38, 4451.
(29) Paetzold, P.; Neyses, S.; Geret, L. Z. Anorg. Allg. Chem. 1995, 621,
732.
20–124.
(
(
10) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.
11) Fournier, J.-H.; Maris, T.; Wuest, J. D.; Guo, W.; Galoppini, E. J.
Am. Chem. Soc. 2003, 125, 1002.
12) Maly, K. E.; Malek, N.; Fournier, J.-H.; Rodriguez-Cuamatzi, P.;
Maris, T.; Wuest, J. D. Pure Appl. Chem. 2006, 78, 1305.
13) Rogowska, P.; Cyranski, M. K.; Sporzynski, A.; Ciesielski, A.
Tetrahedron Lett. 2006, 47, 1389.
(
(
(
(
14) Kinney, R. C.; Pontz, D. F. J. Am. Chem. Soc. 1936, 58, 197.
15) Sporzynski, A.; Szatylowicz, H. J. Organomet. Chem. 1994, 470,
3
1.
1
0.1021/om061057i CCC: $37.00 © 2007 American Chemical Society
Publication on Web 11/08/2007