Page 9 of 11
The Journal of Organic Chemistry
(
17) Lim, M. H.; Lippard, S. J. Copper Complexes for Fluores-
fluorescent probes for imaging the biological signaling mol-
ecule nitric oxide in living cells and organisms. J. Mater.
Chem. B. 2017, 5, 2483−2490.
1
2
3
4
5
6
7
8
cence-Based NO Detection in Aqueous Solution. J. Am.
Chem. Soc. 2005, 127, 12170-12171.
(
18) Lim, M. H.; Lippard, S. J. Fluorescent Nitric Oxide Detec-
tion by Copper Complexes Bearing Anthracenyl and Dansyl
Fluorophore Ligands. Inorg. Chem. 2006, 45, 8980-8989.
19) Sun, C.; Shi, W.; Song, Y.; Chen, W.; Ma, H. An unprece-
dented strategy for selective and sensitive fluorescence de-
tection of nitric oxide based on its reaction with a selenide.
Chem. Commun. 2011, 47, 8638–8640.
(35) Reinhardt, C. J.; Zhou, E. Y.; Jorgensen, M. D.; Partipilo, G.; .
Chan, J. A Ratiometric Acoustogenic Probe for in Vivo Im-
aging of Endogenous Nitric Oxide. J. Am. Chem. Soc. 2018,
140 , 1011–1018.
(36) Mao, Z.; Jiang, H.; Song, X.; Hu, W.; Liu, Z. Development of
a Silicon-Rhodamine Based Near-Infrared Emissive Two-
Photon Fluorescent Probe for Nitric Oxide. Anal. Chem.
2017, 89, 9620−9624.
(37) Mia, J.; Huo, Y.; Lv, X.; Li, Z.; Cao, H.; Shi, H.; Shi, Y.; Guo,
W. Fast-response and highly selective fluorescent probes for
biological signaling molecule NO based on N-nitrosation of
electron-rich aromatic secondary amines. Biomaterials,
2016, 78, 11-19.
(38) Dai, C. G.; Wang, J. L.; Fu,Y. L.; Zhou, H. P.; Song, Q. H.
Selective and Real-Time Detection of Nitric Oxide by a
Two-Photon Fluorescent Probe in Live Cells and Tissue
Slices. Anal. Chem., 2017, 89, 10511−10519.
(
(
20) Smith, R. C.; Tennyson, A. G.; Lim, M. H.; Lippard S. J. Con-
jugated Polymer-Based Fluorescence Turn-On Sensor for
Nitric Oxide. Org. Lett. 2005, 7, 3573-3575.
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(21) Shiue, T. W.; Chen, Y. H.; Wu, C. M.; Singh, G.; Chen, H. Y.;
Hung, C. H.; Liaw, W. F.; Wang, Y. M. Nitric Oxide Turn-on
Fluorescent Probe Based on Deamination of Aromatic Pri-
mary Monoamines. Inorg. Chem. 2012, 51, 5400−5408.
(22) Kojima, H.; Hirotani, M.; Nakatsubo, N.; Kikuchi, K.; Ura-
no, Y.; Higuchi, T.; Hirata, Y.; Nagano, T. Bioimaging of Ni-
tric Oxide with Fluorescent Indicators Based on the Rho-
damine Chromophore. Anal. Chem. 2001, 73, 1967-1973.
(23) Yu, H.; Zhang, X.; Xiao, Y.; Zou, W.; Wang, L.; Jin, L. Tar-
getable Fluorescent Probe for Monitoring Exogenous and
Endogenous NO in Mitochondria of Living Cells. Anal.
Chem. 2013, 85, 7076−7084.
(39) Muthuraj, B.; Deshmukh, R.; Trivedi, V.; Iyer, P. K. Highly
2+
Selective Probe Detects Cu and Endogenous NO Gas in
Living Cell. ACS Appl. Mater. Interfaces, 2014, 6, 6562−6569.
(40) Islam, A S M.; Bhowmick, R.; Pal, K.; Katarkar, A.;
Chaudhuri, K.; Ali, M. A Smart Molecule for Selective Sens-
ing of Nitric Oxide: Conversion of NO to HSNO; Relevance
of Biological HSNO Formation. Inorg. Chem. 2017, 56, 4324-
4331.
(
24) Dong, X.; Heo, C. H.; Chen, S.; Kim, H. M.; Liu, Z. Quino-
line-Based Two-Photon Fluorescent Probe for Nitric Oxide
in Live Cells and Tissues. Anal. Chem. 2014, 86, 308−311.
25) Yao, H. W.; Zhu, X. Y.; Guo, X. F.; Wang, H. An Amphiphilic
Fluorescent Probe Designed for Extracellular Visualization
of Nitric Oxide Released from Living Cells. Anal. Chem.
2016, 88, 9014-9021.
(
(41) Marion, L.; Lavigne, R.; Lemay, L. The Stracture of
Sedamin. Can. J. Chem. 1951, 29, 843–847.
(42) Raddatz, S.; Mueller-Ibeler, J.; Kluge, J. L.; Burdinski, G.;
Havens, J. R.; Onofrey, T. J.; Wang, D.; Schweitzera,
Markus. Hydrazide oligonucleotides: new chemical modifi-
cation for chip array attachment and conjugation. Nucleic
Acid Res. 2002, 21, 4793–4802.
(43) de Lumley-Woodyear, T.; Campbell ,C. N.; Heller, A. Direct
Enzyme-Amplified Electrical Recognition of a 30-Base Mod-
el Oligonucleotide. J. Am. Chem. Soc. 1996, 118, 5504–5505.
(44) Ibrahim, M. K.; Adl, K. E.; Zayed, M. F.; Mahdy, H. A. De-
(
(
(
(
26) Dai, Z.; Tian, L.; Song, B.; Liu, X.; Yuan, J. Development of a
novel lysosome-targetable timegated luminescence probe
for ratiometric and luminescence lifetime detection of nitric
oxide in vivo. Chem Sci. 2017, 8, 1969–1976.
27) Wang, C.; Song, X.; Han, Z.; Li, X.; Xu, Y.; Xiao, Y. Monitor-
ing Nitric Oxide in Subcellular Compartments by Hybrid
Probe Based on Rhodamine Spirolactam and SNAP-tag.
ACS Chem. Biol. 2016, 11, 2033-2040.
sign, synthesis, docking, and biological evaluation of some
novel 5-chloro-2-substituted sulfanylbenzoxazole deriva-
tives as anticonvulsant agents. Med. Chem. Res. 2015, 24,
99–114.
28) Mao, Z.; Feng, W.; Li, Z.; Zeng, L.; Lv, W.; Liu, Z. NIR in, far
red out: developing a two-photon fluorescent probe for
tracking nitric oxide in deep tissue. Chem. Sci. 2016, 7, 5230-
5
235.
(45) Azab, M. E.; Madkour,H. M. F.; Ibraheem, M. A. E. The
Utility of 2-(5,6,7,8-Tetrahydrobenzo[b]thieno- [2,3-
d]pyrimidin-4-yloxy) Acethydrazide in Heterocyclic Syn-
thesis. Phosphorus, Sulfur and Silicon 2006, 181, 1299–1313.
(46) Islam, A. S. M.; Alam, R.; Katarkar, A.; Chaudhuri, K.; Ali,
M. Di-oxime Based Selective Fluorescent Probe for Arse-
nate and Arsenite Ions in a Purely Aqueous Medium with
Living Cell Imaging Applications and H-bonding Induced
Microstructure Formation. Analyst 2015, 140, 2979-2983.
(47) Wu, C. M.; Chen, Y. H.; Dayananda, K.; Shiue, T. W.; Hung,
C. H.; Liaw, W. F.; Chen, P. Y.; Wang, Y. M. Sensitivity
evaluation of rhodamine B hydrazide towards nitric oxide
and its application for macrophage cells imaging. Anal.
Chem. Acta. 2011, 708, 141–148.
29) Tian, L.; Dai, Z.; Liu, X.; Song, B.; Ye, Z.; Yuan, J. Ratiometric
Time-Gated Luminescence Probe for Nitric Oxide Based on
an Apoferritin-Assembled Lanthanide Complex-Rhodamine
Luminescence Resonance Energy Transfer System. Anal.
Chem. 2015, 87, 10878−10885.
(
30) Tang, J.; Guo, Z.; Zhang, Y.; Bai, B.; Zhu, W. H. Rational
design of a fast and selective near infrared fluorescent probe
for targeted monitoring of endogenous nitric oxide. Chem.
Commun. 2017, 53, 10520- 10523.
(31) Huo, Y.; Miao, J.; Han, L.; Li, Y.; Li, Z.; Shib, Y.; Guo, W.
Selective and sensitive visualization of endogenous nitric
oxide in living cells and animals by a Sirhodamine deoxylac-
tam-based near-infrared fluorescent probe. Chem. Sci. 2017,
8, 6857–6864.
(
32) Yu, H.; Zhang, X.; Xiao, Y.; Zou, W.; Wang, L.; Jin, L. Tar-
getable Fluorescent Probe for Monitoring Exogenous and
Endogenous NO in Mitochondria of Living Cells. Anal.
Chem. 2013, 85, 7076−7084.
(
48) Kharitonov, V. G.; Sundquist, A. R.; Sharma, V. S. Kinetics
of nitric oxide autoxidation in aqueous solution. J. Biol.
Chem. 1994, 8, 5881-5883.
(
33) Wang, N.; Yu, X.; Zhang, K.; Mirkin, C. A.; Li, J. Upconver-
sion Nanoprobes for the Ratiometric Luminescent Sensing
of Nitric Oxide. J. Am. Chem. Soc. 2017, 139, 12354−12357.
34) Huo, Y.; Miao, J.; Li, Y.; Shi, Y.; Shia, H.; Guo, W. Aromatic
primary monoamine-based fast-response and highly specific
(49) Gra¨tzel, M.; Taniguchi, S.; Henglein, A. Pulse radiolytic
investigation of the oxidation of NO and of the equilibrium
(
ACS Paragon Plus Environment