Metallo-b-Lactamase Mimics
FULL PAPER
Penicillin G in the presence of complex 1: 1H NMR ([D6]DMSO): d=
8.51 (1H; C(O)N-amide), 7.75 (m, 5H; aromatic protons) 4.47 (1H),
4.72ppm (1H).
Penicillin G in the presence of complex 3: 1H NMR ([D6]DMSO): d=
8.31 (brd, 1H; C(O)N-amide), 7.22 (m, 5H; aromatic protons), 4.67 ppm
(brd, 2H).
Acknowledgements
This study was supported by the Department of Science and Technology
(DST) and the Council for Scientific and Industrial Research (CSIR),
New Delhi, India. A.T. acknowledges the University Grants Commission
(UGC), New Delhi, for a fellowship.
Penicillin G in the presence of complex 4: 1H NMR ([D6]DMSO): d=
8.45 (brd, 1H; C(O)N-amide), 7.18 (brs, 5H; aromatic protons),
4.51 ppm (brd, 2H).
[1] a) D. E. Wilcox, Chem. Rev. 1996, 96, 2435–2458; b) W. N. Lips-
comb, N. Sträter, Chem. Rev. 1996, 96, 2375–2433.
Free oxacillin: 1H NMR ([D6]DMSO): d=9.07 (d, 1H; C(O)N-amide),
[2] a) N. Sträter, W. N. Lipscomb, T. Klabunde, B. Krebs, Angew. Chem.
1996, 108, 2158–2191; Angew. Chem. Int. Ed. Engl. 1996, 35, 2 02 5–
2055; b) H. Steinhagen, G. Helmchem, Angew. Chem. 1996, 108,
2489–2492; Angew. Chem. Int. Ed. Engl. 1996, 35, 2339–2342.
[3] a) J. A. Cricco, A. J. Vila, Curr. Pharm. Des. 1999, 5, 915–927;
b) J. A. Cricco, E. G. Orellano, R. M. Rasia, E. A. Ceccarelli, A. J.
Vila, Coord. Chem. Rev. 1999, 190–192, 519–535; c) Z. Wang, W.
Fast, A. M. Valentine, S. J. Benkovic, Curr. Opin. Chem. Biol. 1999,
3, 614–622; d) Z. Wang, S. J. Benkovic, J. Biol. Chem. 1998, 273,
22402–22408.
[4] a) N. Sträter, W. N. Lipscomb, Biochemistry 1995, 34, 14792–14800;
b) B. Chevrier, C. Schalk, H. DꢁOrchymont, J. M. Rondeau, D.
Moras, C. Tarnus, Structure 1994, 2, 283–291; c) J. L. Vanhooke,
M. M. Benning, F. M. Raushel, H. M. Holden, Biochemistry 1996,
35, 6020–6025; d) E. Hough, L. K. Hansen, B. Birknes, K. Jynge, S.
Hansen, A. Hordvik, C. Little, E. Dodson, Z. Derewenda, Nature
1989, 338, 357–360; e) A. Volbeda, A. Lahm, F. Sakiyama, D. Suck,
EMBO J. 1991, 10, 1607–1618.
[5] a) K. Bush, Clin. Infect. Dis. 1998, 27, S48–S53; b) D. M. Livermore,
J. Antimicrob. Chemother. 1998, 41, 25–41.
[6] H. Kurosaki, Y. Yamaguchi, T. Higashi, K. Soga, S. Matsueda, H.
Yumoto, S. Misumi, Y. Yamagata, Y. Arakawa, M. Goto, Angew.
Chem. 2005, 117, 3929–3932; Angew. Chem. Int. Ed. 2005, 44, 3861–
3864.
[7] R. Paul-Soto, M. Herµndez-Valladares, M. Galleni, R. Bauer, M.
Zeppezauer, J.-M. FrØre, H. W. Adolph, FEBS Lett. 1998, 438, 137–
140.
[8] a) T. Koike, M. Takamura, E. Kimura, J. Am. Chem. Soc. 1994, 116,
8443–8449; b) N. V. Kaminskaia, B. Spingler, S. J. Lippard, J. Am.
Chem. Soc. 2000, 122, 6411–6422; c) N. V. Kaminskaia, B. Spingler,
S. J. Lippard, J. Am. Chem. Soc. 2001, 123, 6555–6563; d) B. Bauer-
Siebenlist, S. Dechert, F. Meyer, Chem. Eur. J. 2005, 11, 5343–5352.
[9] H. Park, S. Nam, J. Lee, C. Yoon, B. Mannervik, S. J. Benkovic, H.
Kim, Science 2006, 311, 535–538.
[10] T. N. Sorrell, C. J. OꢁConnor, O. P. Anderson, J. H. Reibenspies, J.
Am. Chem. Soc. 1985, 107, 4199–4206.
[11] T. Mallah, M.-L. Boillot, O. Kahn, J. Gouteron, S. Jeannin, Y. Jean-
nin, Inorg. Chem. 1986, 25, 3058–3065.
[12] E. E. Eduok, C. J. OꢁConnor, Inorg. Chim. Acta 1984, 88, 229–233.
[13] M. S. Nasir, B. I. Cohen, K. D. Karlin, J. Am. Chem. Soc. 1992, 114,
2482–2494.
[14] a) B.-H. Ye, X.-Y. Li, I. D. Williams, X.-M. Chen, Inorg. Chem.
2002, 41, 6426–6431; b) A. Erxleben, Inorg. Chem. 2001, 40, 208–
213; c) C. K. Williams, N. R. Brooks, M. A. Hillmyer, W. B. Tolman,
Chem. Commun. 2002, 2132–2133.
[15] a) J. Chen, X. Wang, Y. Zhu, J. Lin, X. Yang, Y. Li, Y. Lu, Z. Guo,
Inorg. Chem. 2005, 44, 3422–3430; b) A. Horn, Jr., I. Vencato, A. J.
Bortoluzzi, R. Hçrner, R. A. N. Silva, B. Spoganicz, V. Drago, H.
Terenzi, M. C. B. de Oliveira, R. Werner, W. Haase, A. Neves, Inorg.
Chim. Acta 2005, 358, 339–351; c) H. Sakiyama, K. Ono, T. Suzuki,
K. Tone, T. Ueno, Y. Nishida, Inorg. Chim. Acta 2005, 358, 372–374.
[16] S. Uhlenbrock, B. Krebs, Angew. Chem. 1992, 104, 1631–1632;
Angew. Chem. Int. Ed. Engl. 1992, 31, 1647–1648.
[17] N. O. Concha, B. A. Rasmussen, K. Bush, O. Herzberg, Structure
1996, 4, 823–836.
[18] H. Sakiyama, R. Mochizuki, A. Sugawara, M. Sakamoto, Y. Nishida,
M. J. Yamasaki, Chem. Soc. Dalton Trans. 1999, 997–1000.
[19] a) D. Suµrez, Jr., K. M. Merz, J. Am. Chem. Soc. 2001, 123, 3759–
3770; b) N. Dꢂaz, D. Suµrez, Jr., K. M. Merz, J. Am. Chem. Soc.
7.52(m, 5H; aromatic protons), 5.41 ppm (brs, 2H).
Oxacillin in the presence of complex 1: 1H NMR ([D6]DMSO): d=8.65
(1H; C(O)N-amide), 7.63 (brs, 2H; aromatic protons), 7.42 (brs, 3H; ar-
omatic protons), 4.81 (1H), 4.59 ppm (1H).
Oxacillin in the presence of complex 3: 1H NMR ([D6]DMSO): d=8.71
(brd, 1H; C(O)N-amide), 7.64 (brs, 2H; aromatic protons), 7.42 (brs,
3H; aromatic protons), 4.65 ppm (brd, 2H).
Oxacillin in the presence of complex 4: 1H NMR ([D6]DMSO): d=8.70
(brd, 1H; C(O)N-amide), 7.63 (brs, 2H; aromatic protons), 7.42 (brs,
3H; aromatic protons), 4.68 ppm (brd, 2H).
Hydrolysis of penicillin G and oxacillin by b-lactamases: The hydrolyzed
products from the reactions of penicillin G and oxacillin with test com-
pounds were identical to those obtained by using the natural enzymes.
For a comparison, both the binuclear metalloenzyme (BcII) and the
serine-containing enzyme from Bacillus cereus were employed. The reac-
tions were carried out in HEPES buffer at pH 7.5. In a typical experi-
ment, 50 mg of oxacillin was dissolved in 10 mL of HEPES buffer and
this solution was treated with one unit of BcII. After 30 min, the reaction
afforded the expected hydrolyzed product, as confirmed by 1H NMR
spectroscopy and HPLC experiments. The reactions of oxacillin with the
serine-containing b-lactamase, and of penicillin with both enzymes were
performed by following the same procedure. The hydrolyzed products
were purified by HPLC by using a semipreparative column and the sol-
vent was evaporated under high vacuum. Oxacillin turnover product:
1H NMR (400 MHz, CD3OD): d=1.31 (s, 3H), 1.60 (s, 3H), 2.69 (s, 3H),
3.60 (s, 1H), 4.54 (d, 1H), 5.20 (d, 1H), 7.48–7.49 (m, 3H), 7.86–
7.87 ppm (m, 2H).
Determination of b-lactamase activity: The kinetics of hydrolysis of oxa-
cillin and penicillin G were monitored by HPLC by using a reverse-phase
column. All reactions with the natural enzymes were carried out in phos-
phate buffer and the reactions with synthetic compounds were carried
out in a 9:1 mixture of 0.05m HEPES buffer/DMSO at pH 7.5. The stock
solutions of test complexes and oxacillin were prepared in the appropri-
ate solvent and were used immediately to avoid any possible decomposi-
tion. The concentration of stock solutions of oxacillin, complexes, and in-
hibitor was fixed at 510À3 m. In a typical kinetics experiment, a sample
vial containing 1.5 mL of the test complex and an appropriate concentra-
tion of oxacillin was incubated. At various time intervals, 10 mL aliquots
were removed from the reaction mixture and injected directly onto the
HPLC column. The compounds were eluted in a linear-gradient mode
with a mixture of 30–80% acetonitrile and 0.1% trifluoroacetic acid
(TFA) over 8.5 min at a flow rate of 1.0 mLminÀ1. The reaction products
(oxacillin turnover product, retention time: 3.66 min) and oxacillin (re-
tention time: 4.24 min) were separable. The chromatograms were ob-
tained at 254 nm and the concentration of oxacillin or hydrolyzed prod-
uct was determined for each injection from the peak area by using a cali-
bration plot. To avoid any significant changes in the concentrations of
the starting materials or in the product inhibition, only the first 5–10%
of conversion was monitored in most cases. To calculate the percentage
conversion in the presence of the enzymes and complexes, the test sam-
ples were injected onto the column at regular time intervals and the
HPLC was run for several hours. The maximum velocity (Vmax), Michae-
lis constant (Km), turnover number (kcat), and catalytic efficiency (h) for
each complex were calculated from the double-reciprocal or Linewea-
ver–Burk plots.
Chem. Eur. J. 2006, 12, 7797 – 7806
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7805