2026
G. B. Jones, M. Guzel / Tetrahedron: Asymmetry 9 (1998) 2023–2026
Acknowledgements
We thank the GHS, Elsa U. Pardee Foundation and the Donors of the Petroleum Research Fund
(Administered by the American Chemical Society) for financial support of this work (28706-AC1).
References
1. For review see Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994.
2. Jones, G. B.; Chapman, B. J. Synthesis 1995, 475.
3. Hawkins, J. M.; Loren, S. J. Am. Chem. Soc. 1991, 113, 7794; Hawkins, J. M.; Loren, S.; Nambu, M. J. Am. Chem. Soc.
1994, 116, 1657.
4. Corey, E. J.; Loh, T.-P. J. Am. Chem. Soc. 1991, 113, 8966; Corey, E. J.; Loh, T.-P.; Roper, T. D.; Azimioara, M. D.; Noe,
M. C. J. Am. Chem. Soc. 1992, 114, 8290.
5. Ishihara, K.; Gao, Q.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 10412.
6. Corey, E. J.; Rhode, J. J. Tetrahedron Lett. 1997, 38, 37.
7. Jones, G. B.; Heaton, S. B. Tetrahedron Lett. 1992, 33, 1693; Jones, G. B.; Heaton, S. B. Tetrahedron: Asymmetry 1993,
4, 261; Jones, G. B.; Huber, R. S. Synlett 1993, 367; Jones, G. B.; Chapman, B. J.; Huber, R. S.; Beaty, R. Tetrahedron:
Asymmetry 1994, 5, 1199; Jones, G. B.; Huber, R. S.; Chapman, B. J. Tetrahedron: Asymmetry 1997, 8, 1797; Jones, G.
B.; Guzel, M.; Chapman, B. J. Tetrahedron: Asymmetry 1998, 9, 901.
8. Jones, G. B.; Heaton, S. B.; Chapman, B. J.; Guzel, M. Tetrahedron: Asymmetry 1997, 8, 3625.
9. Jones, G. B.; Chapman, B. J. Synlett 1997, 439.
10. Solladie-Cavallo, A.; Advances in Metal–Organic Chemistry, Liebeskind, L. S. Ed; JAI Press, CT, 1989, Vol. 1, pp. 99–133.
11. Jaouen, G.; Dabard, R. J. Organometal. Chem. 1974, 72, 377.
12. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.;
Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768.
1
13. Key data: (6) H NMR (300 MHz, CDCl3) δ 6.92 (s, 1H), 5.58 (t, 1H, J 9 Hz), 5.42 (s, 1H), 5.09 (s, 1H), 5.05 (s, 1H),
4.79 (s, 1H), 4.53 (s, 1H), and 3.70 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 232.2, 128.3, 113.8, 94.9, 83.8, 82.9, 72.8, 67.8,
55.7; (7) 1H (300 MHz, CDCl3) δ 6.94 (s, 1H), 5.53 (t, 1H, J 6 Hz), 5.41 (s, 1H), 5.12 (s, 1H), 4.81 (s, 1H), 4.29 (s, 1H),
4.18 (s, 1H), and 3.79 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 233.1, 127.8, 113.1, 94.7, 83.8, 82.7, 70.4, 68.6, and 55.6.
14. Dabard, R.; Jaouen, G. Tetrahedron Lett. 1969, 3391.
15. For other examples of catalysts incorporating the arene chromium carbonyl moieties see: Uemura, M.; Miyake, R.;
Nakayama, K.; Shiro, M.; Hayashi, Y. J. Org. Chem. 1993, 58, 1238; Pasquier, C.; Naili, S.; Pelinski, L.; Brocard, J.;
Mortreux, A.; Agbossou, F. Tetrahedron: Asymmetry 1988, 9, 193.
16. Jones, G. B.; Chapman, B. J.; Mathews, J. E. J. Org. Chem. 1998, 63, 2928.
17. The π-donor ability of an arene chromium tricarbonyl complex has been reported: see Kaneta, N.; Mitamura, F.; Uemura,
M.; Murata, Y.; Komatsu, K. Tetrahedron Lett. 1996, 37, 5385.
18. For an example of a chromium tricarbonyl π-complexed borabenzene–acrolein adduct see: Amendola, M. C.; Stockman,
K. E.; Hoic, D. A.; Davis, W. M.; Fu, G. C. Angew. Chem. Intl. Ed. 1997, 36, 267.