12546 J. Phys. Chem. A, Vol. 114, No. 47, 2010
Dugarte et al.
been evaluated by using the NBO population analysis. Two
energetically relevant interactions around the -SC(O)- group
are specially analyzed:45,46 (a) “mesomeric interaction” or the
charge transfer from the lone-electron pair with π symmetry
(n′′S) to the π*CdO formally vacant orbital, which serve to
commensurate the electronic delocalization within the -SC(O)-
fragment, and (b) “anomeric interaction” or the charge transfer
from the in-plane p-type lone electron pair of the sulfur atom
(n′S) to the σ*C-C antibonding orbital.45 At the B3LYP/6-
311++G(d,p) level, the contributions of these interactions
amount to 36.2, 36.4, and 34.0 kcal/mol for ꢀ-propio-, γ-butyro-
and δ-valerothiolactones, respectively. These results suggest that
the electronic interaction is not much affected by the nonpla-
narity of the thiolactone ring. The local planar symmetry around
the carbonylic sp2 carbon atom leads to an efficient electronic
conjugation. These results are in agreement with the early
suggestion of Chin et al. These authors pointed out that the
electronic properties of thiolactones are determined primarily
tively. The FTIR and FT-Raman spectra are shown in Figure
S1. This material is available free of charge via the Internet at
References and Notes
(1) Nakayama, J.; Ishii, A. Chemistry of dithiiranes, 1,2-dithietanes,
and 1,2-dithietes. In AdVances in Heterocyclic Chemistry; Academic Press:
New York, 2000; Vol. 77; pp 221.
(2) Mloston, G.; Majchrzak, A.; Senning, A.; Sotofte, I. J. Org. Chem.
2002, 67, 5690.
(3) Schreiner, P. R.; Reisenauer, H. P.; Romanski, J.; Mloston, G. J. Am.
Chem. Soc. 2010, 132, 7240.
(4) Jakubowski, H. FASEB J. 1999, 13, 2277.
(5) Jakubowski, H. J. Nutr. 2000, 130, 377.
(6) Jakubowski, H. J. Biol. Chem. 1997, 272, 1935.
(7) Rowe, D. J. Perfum. FlaVor. 1998, 23.
(8) Roling, I.; Schmarr, H.-G.; Eisenreich, W.; Engel, K.-H. J. Agric.
Food Chem. 1998, 46, 668.
(9) Paryzek, Z.; Skiera, I. Org. Prep. Proc. Int. 2007, 39, 203.
(10) Holmberg, B.; Schjanberg, E. Arkiu Kemi. Mineral. Geol. 1940,
14A, 22.
(11) SchjÅnberg, E. Ber. Deutsch. Chem. Ges. 1941, 74, 1751.
(12) Fries, K.; Mengel, H. Ber. Deutsch. Chem. Ges. 1912, 45, 3408.
(13) Knunyants, I. L.; Linkova, M. G.; Kuleshova, N. D. IzV. Acad.
Nauk SSSR, Ser. Khim. 1964, 644.
by inductive electronic donations from the alkyl chain.47
A
similar behavior was reported by Isaksson and Lijefors for five-,
six-, and seven-member cyclic oxamides.48
(14) Overberger, C. G.; Weise, J. K. J. Am. Chem. Soc. 1968, 90, 3533.
(15) Houk, K. N.; Jabbari, A.; Hall, H. K.; Aleman, C. J. Org. Chem.
2008, 73, 2674.
4. Conclusion
(16) Coulembier, O.; Dege´e, P.; Hedrick, J. L.; Dubois, P. Prog. Polym.
Sci. 2006, 31, 723.
The X-ray molecular structure of δ-valerothiolactone reveals
that its skeleton adopts a half-chair conformation with anti
orientation of the CdO double bond with respect to the S-C
single bond. The skeletal parameters, especially valence angles,
differ from those typically found in acyclic thioester compounds,
suggesting the presence of strain effects. The conventional ring
strain energy was determined to be 7.5 kcal/mol [MP2/6-
311++G(d,p)] within the hyperhomodesmotic model. Thus,
following the tendency already known for lactone molecules,29
δ-valerothiolactone is more strained than the five-member
species. This nonintuitive behavior can be, however, rationalized
on the basis of the molecular structure distortions associated
with the ring formation.
(17) Dugarte, N. Y.; Erben, M. F.; Romano, R. M.; Boese, R.; Ge,
M.-F.; Li, Y.; Della Ve´dova, C. O. J. Phys. Chem. A 2009, 113, 3662.
(18) Dugarte, N. Y.; Erben, M. F.; Romano, R. M.; Ge, M.-F.; Li, Y.;
Della Ve´dova, C. O. J. Phys. Chem. A 2010, 114, 9462.
(19) Bhar, D.; Chandrasekaran, S. Tetrahedron 1997, 53, 11835.
(20) Gerone´s, M.; Downs, A. J.; Erben, M. F.; Ge, M.; Romano, R. M.;
Yao, L.; Della Ve´dova, C. O. J. Phys. Chem. A 2008, 112, 5947.
(21) Wang, W.; Yao, L.; Zeng, X.; Ge, M.; Sun, Z.; Wang, D.; Ding,
Y. J. Chem. Phys. 2006, 125, 234303.
(22) Wang, W.; Ge, M.; Yao, L.; Zeng, X.; Sun, Z.; Wang, D.
ChemPhysChem 2006, 7, 1382–1387.
(23) Boese, R.; Nussbaumer, M. In situ crystallisation techniques. In
Organic Crystal Chemistry; Jones, D. W., Ed.; Oxford University Press:
Oxford, 1994; Vol. 7; pp 20.
(24) Siemens. SHELTX-Plus Version SGI IRIS Indigo, a Complex
Software Package for SolVing, Refining and Displaying Crystal Strucutres;
1991.
Furthermore, the valence electronic structure was investigated
by HeI photoelectron spectroscopy. The systematic comparison
between thiolactone species can be correlated with the role
played by the cycloalkane groups, mainly through inductive
donating effects.
(25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03;
ReVision B.04 ed.; Gaussian, Inc.: Pittsburgh PA, 2003.
(26) Cederbaum, L. S.; Domcke, W. AdV. Chem. Phys. 1977, 36, 205.
(27) Cederbaum, L. S.; Schirmer, J.; Domcke, W.; von Niessen, W. J.
Phys. B 1977, 10, L549.
(28) Zhao, M.; Gimarc, B. M. J. Phys. Chem. 1993, 97, 4023.
(29) Alema´n, C.; Betran, O.; Casanovas, J.; Houk, K. N.; Hall, H. K. J.
Org. Chem. 2009, 74, 6237.
(30) Fatheree, D. M.; Deeg, G. L.; Matthews, D. B.; Russell, J. G. Org.
Magn. Res. 1982, 18, 92.
(31) (a) Della Ve´dova, C. O.; Romano, R. M.; Oberhammer, H. J. Org.
Chem. 2004, 69, 5395. (b) Ang, H. G.; Klapdor, M. F.; Kwik, W. L.; Lee,
Y. W.; Mack, H. G.; Mootz, D.; Poll, W.; Oberhammer, H. J. Am. Chem.
Soc. 1993, 115, 6929.
(32) Vujasinovic, I.; Veljkovic, J.; Mlinaric-Majerski, K.; Molcanov,
K.; Kojic-Prodic, B. Tetrahedron 2006, 62, 2868.
Acknowledgment. M.F.E. and C.O.D.V. are members of the
Carrera del Investigador del CONICET, Repu´blica Argentina.
The Argentinean authors thank the Consejo Nacional de
Investigaciones Cient´ıficas y Te´cnicas (CONICET), the Agencia
Nacional de Promocio´n Cient´ıfica y Tecnolo´gica (ANPCYT),
and the Comisio´n de Investigaciones Cient´ıficas de la Provincia
de Buenos Aires (CIC), Repu´blica Argentina. They are indebted
to the Facultad de Ciencias Exactas, Universidad Nacional de
La Plata for financial support. Financial support by the Volk-
swagen-Stiftung and the Deutsche Forschungsgemeinschaft is
gratefully acknowledged. C.O.D.V. and N.Y.D. especially
acknowledge the DAAD, which generously sponsors the DAAD
Regional Program of Chemistry for the Repu´blica Argentina
supporting Latin-American students to study for their Ph.D. in
La Plata.
Supporting Information Available: Crystallographic data
and listing of atomic coordinates and equivalent isotropic
displacement coefficients and anisotropic displacement param-
eters are given in Tables S1-4. Tables S5 and S6 list the
computed strain energy and the atomic charge for the neutral
and the low-lying cationic state of δ-valerothiolactone, respec-
(33) (a) Philip, T.; Cook, R. L.; Malloy, T. B., Jr.; Allinger, N. L.; Chang,
S.; Yuh, Y. J. Am. Chem. Soc. 1981, 103, 2151. (b) Allinger, N. L.; Chang,
S. H. M. Tetrahedron 1977, 33, 1561.