D. V. Jawale, U. R. Pratap, M. R. Bhosale, and R. A. Mane
Vol 000
[3] Shinogi. U S Patent 1959, 2 888 455.
[4] Reddick, J. J.; Saha, S.; Lee, J.; Melnick, J. S.; Perkins, J.;
Begley, T. P. Bioorg Med Chem Lett 2001, 11, 2245.
[5] (a) Adlington, R. M.; Baldwin, J. A.; Catterick, D.; Pritchard,
G. J. J Chem Soc Perkin Trans 1 1999 855; references cited therein;
(b) Rosenthal, G. A. Plant Nonprotein Amino and Imino Acids Biological,
Biochemical and Toxicological Properties; Academic: New York, NY,
1982; Vol 117; (c) Bell, E. A. Biochim Biophys Acta 1961, 47, 602.
[6] Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P. M. S.
Bioorg Med Chem 2005, 13, 4645.
monitored by thin-layer chromatography. After confirming
in situ formation of the intermediates chalcones, guanidine
hydrochloride (12mmol) was added to the reaction mass
in portions. Then, the reaction content was further stirred
at room temperature for 4h until completion of the
condensation. The progress of the reaction was monitored
by thin-layer chromatography (TLC). It was then poured
into ice-cold water. Thus, obtained solid was filtered,
washed with water, and crystallized by using proper
solvents. PEG-400 was recovered from the filtrate by
vacuum distillation of the aqueous filtrate and recycled for
the same reaction sequences.
Experimental procedure for 2-amino-4-(4-hydroxyphenyl)-
6-(4-methoxyphenyl) pyrimidine 4i. Potassium hydroxide
(20 mmol) was dissolved in 90% aq. PEG-400 solution
(10 mL). To the aforementioned solution, 4-hydroxy
acetophenone was added, and the reaction content was
stirred for 0.5h. After that, 4-methoxy benzaldehyde
(10 mmol) was introduced to the stirred mass, and stirring
was then continued at room temperature for 5.3 h. The
completion of the reaction was monitored by thin-layer
chromatography. After confirming in situ formation of the
intermediate chalcone, guanidine hydrochloride (12 mmol)
and KOH (10 mmol) were added to the reaction mass in
portions. The reaction content was further stirred at room
temperature for 4 h until the completion of the
condensation. The completion was confirmed by thin-layer
chromatography. It was then poured into ice-cold water
and neutralized by HCl. Thus, obtained solid was filtered,
washed with water, and crystallized by using proper
solvents. PEG-400 was not recovered from the filtrate.
[7] (a) Dozorova, E. N.; Grizik, S. I.; Persianova, I. V.; Syubaev,
R. D.; Shvarts, G. Y.; Granik, V. G. Khim-Pharm Z 1985, 19, 154;
(b) Buchdunger, E.; Zimmermann, J.; Mett, H.; Meyer, T.; Muller, M.;
Drucker, B. J.; Lydon, N. B. Cancer Res 1996, 56, 100.
[8] (a) Alam, M.; Beevers, R. E.; Ceska, T.; Davenport, R. J.;
Dickson, K. M.; Fortunato, M.; Gowers, L.; Haughan, A. F.; James, L.
A.; Jones, M. W.; Kinsella, N.; Lowe, C.; Meissner, J. W.; Nicolas, A.
L.; Perry, B. G.; Phillips, D. J.; Pitt, W. R.; Platt, A.; Ratcliffe, A. J.;
Sharpe, A.; Tait, L. J Bioorg Med Chem Lett 2007, 17, 3463; (b)
Alexander, A.; Parent, J. R. G.; Katzenellenbogen, J. A. J Med Chem
2008, 51, 6512; (c) Harris, P. A.; Boloor, A.; Cheung, M.; Kumar, R.;
Crosby, R. M.; Davis-Ward, R. G.; Epperly, A. H.; Hinkle, K. W.; Hunter,
R. N.; Johnson, J. H.; Knick, V. B.; Laudeman, C. P.; Luttrell, D. K.;
Mook, R. A.; Nolte, R. T.; Rudolph, S. K.; Szewczyk, J. R.; Truesdale,
A. T.; Veal, J. M.; Wang, L.; Stafford, J. A. J Med Chem 2008, 51,
4632; (d) Brough, P. A.; Barril, J. B.; Chene, P.; Davies, N. G. M.;
Surgenor, A.; Valenti, M.; Walls, S.; Webb, P.; Mike, W.; Workman, P.;
Wright, L. J Med Chem 2009, 52, 4794.
[9] Yang, W.; Ruan, Z.; Wang, Y.; Kirk, K. V.; Ma, Z.; Arey, B.
J.; Cooper, C. B.; Seethala, R.; Feyen, J. H. M.; Dickson, J. K. Jr. J Med
Chem 2009, 52, 1204.
[10] Yasuji, S.; Masaichi, H.; Kataoka, K.; Hoshina, K.; Yamazaki,
N.; Kadota, T.; Yamaguchi, H. Japan Patent WO 9105784, A1 2, 1991.
[11] Yokoyama, K.; Kato, S.; Kitahara, T.; Imuda, J.; Takei, M.;
Awaya, A.; Nakano, T.; Horigome, K.; Sasaki, T. Japan Patent JP
01040469, A2 10, 1989.
[12] Awaya, A.; Nakano, T.; Kobayashi, H.; Tan, K.; Horikomi, K.;
Sasaki, T.; Yokoyama, K.; Ohno, H.; Kato, K. Japan Patent WO 8704928,
A1 27, 1987.
[13] (a) Maquoi, E.; Sounni, N. E.; Devy, L.; Olivier, F.;
Frankenne, F.; Krell, H. W.; Grams, F.; Foidart, J. M.; Noel, A. Cancer
Res 2004, 10, 4038; (b) Huang, M.; Wang, Y.; Collins, M.; Mitchell, B.
S.; Graves, L. M. Mol Pharmacol 2002, 62, 463; (c) Von Bubnoff, N.;
Veach, D. R.; Miller, W. T.; Li, W.; Sanger, J.; Peschel, C.; Bornmann,
W. G.; Clarkson, B.; Duyster, J. Cancer Res 2003, 63, 6395.
[14] Majid, M. H.; Samaheh, S.; Hossein, A. O.; Rahim, H. S.;
Fatemeh, F. B. Tetrahedron Lett 2009, 50, 662.
[15] Bellura, E.; Langera, P. Tetrahedron 2006, 62, 5426.
[16] (a) Dodson, R. M.; Seyler, J. K. J Org Chem 1951, 16, 461;
(b) Kothari, S.; Singphal, M.; Vijayvergia, D.; Vyas, R.; Verma, B. L. J
Indian Chem Soc 2000, 77, 329.
Spectroscopic data of representative compound.
4-(4-
Chlorophenyl)-6-(4-methoxyphenyl)pyrimidin-2-amine (4e):
1H-NMR (δ ppm, 400MHz, DMSO-d6): 3.8 (s, 3H, –OCH3),
6.71 (s, 2H, –NH2), 7.05 (d, 2H, J=8Hz, Ar–H), 7.57 (d,
2H, J= 8Hz, pyrimidine-H), 7.68 (s, 1H, Ar–H), 8.21 (q, 4H,
J=8Hz, Ar–H); 13C-NMR (δ ppm, 100 MHz, DMSO-d6):
55.8 (–OCH3), 101.5, 114.4 (2× Ar–C), 129.1 (2×Ar–C),
129.2, 130.0 (2×Ar–C), 135.6 (2×Ar–C), 136.8 (2×Ar–C),
161.8, 163.8, 164.4, 165.2: gas chromatography mass
spectrometry (m/z): 312 [M+1], 314 [M+3].
[17] Mont, N.; Teixido, J.; Jose, I. B.; Kappeb, C. O. Tetrahedron
Lett 2003, 44, 5385.
[18] Laszlo, V.; Tamas, N.; Istvan, K.; Jordi, B.; Gyorgy, D.;
Laszlo, U.; Ferenc, D. Tetrahedron 2003, 59, 655.
[19] Zhichkin, P.; Fairfax, D. J.; Eisenbeisb, S. A. Synthesis 2002,
6, 29.
[20] Qiya, Z.; Hong, X. H.; Suhui, W.; Shuajiang, T.; Liangce, R.
Syn Commun 2009, 39, 516.
Acknowledgments. Authors are thankful to Professor D. B. Ingle
for his invaluable discussions and guidance. One of the authors,
D. V. Jawale, is also grateful to UGC, New Delhi, India, for
Research Fellowship in Sciences for meritorious students.
[21] (a) Harris, J. M. Poly(Ethylene Glycol) Chemistry, Biotechno-
logical and Biomedical Applications; Plenum Press: New York, 1992, pp
3; (b) Harris, J. M.; Zalipsky, S. Polyethylene Glycol: Chemistry and
Biological Application; ACS Books: Washington, DC, 1997.
[22] (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and
Practice; Oxford Science Publications: New York, 1998; (b) Anastas, P.
T.; Williamson, T. Green Chemistry: Frontiers in Benign Chemical Syn-
thesis and Processes; Oxford Science Publications: New York, 1998;
(c) Clark, J. H. Green Chem 1999, 1; (d) Clark, J. H. Chem Ber 1998, 43.
[23] (a) Vasudevan, V. N.; Rajendra, S. V. Green Chem 2001, 3,
146; (b) Haimov, A.; Neumann, R. Chem Commun 2002, 876; (c) Heiss,
REFERENCES AND NOTES
[1] Jain, K. S.; Chitre, T. S.; Miniyar, P. B.; Kathiravan, M. K.;
Bendre, V. S.; Veer, V. S.; Shahane, S. R.; Shishoo, C. J Current Sci
2006, 90, 25.
[2] Hong, W. L.; Joong, B. A.; Sung, K. K.; Soon, K. A.; Deok, C.
H. Org Process Res Dev 2007, 11, 190.
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet