Biochemistry
Article
(4) Cromatie, T. H., and Walsh, C. T. (1976) Escherichia coli
glyoxalate carboligase. Properties and reconstitution with 5-deazaFAD
and 1,5-dihydrodeazaFADH2. J. Biol. Chem. 251, 329−333.
(5) Kaplun, A., Binshtein, E., Vyazmensky, M., Steinmetz, A., Barak,
Z., Chipman, D. M., Tittmann, K., and Shaanan, B. (2008) Glyoxylate
carboligase lacks the canonical active site glutamate of thiamin-
dependent enzymes. Nat. Chem. Biol. 4, 113−118.
(6) Shaanan, B., and Chipman, D. M. (2009) Reaction mechanism of
thiamin diphosphate enzymes: New insights into the role of a
conserved glutamate residue. FEBS J. 276, 2447−2453.
(7) Chipman, D. M., Barak, Z., Shaanan, B., Vyazmensky, M.,
Binshtein, E., Belenky, I., Temam, V., Steinmetz, A., Golbik, R., and
Tittmann, K. (2009) Origin of the specificities of acetohydroxyacid
synthases and glyoxylate carboligase. J. Mol. Catal. B: Enzym. 61, 50−
55.
(8) O’Brien, T. A., Kluger, R., Pike, D. C., and Gennis, R. B. (1980)
Phosphonate analogues of pyruvate. Probes of substrate binding to
pyruvate oxidase and other thiamin pyrophosphate-dependent
decarboxylases. Biochim. Biophys. Acta 613, 10−17.
(9) Wille, G., Meyer, D., Steinmetz, A., Hinze, E., Golbik, R., and
Tittmann, K. (2006) The catalytic cycle of a thiamin diphosphate
enzyme examined by cryocrystallography. Nat. Chem. Biol. 2, 324−328.
(10) Tittmann, K., and Wille, G. (2009) X-ray crystallographic
snapshots of reaction intermediates in pyruvate oxidase and trans-
ketolase illustrate common themes in thiamin catalysis. J. Mol. Catal. B:
Enzym. 61, 93−99.
(11) Nemeria, N. S., Arjunan, P., Chandrasekhar, K., Mossad, M.,
Tittmann, K., Furey, W., and Jordan, F. (2010) Communication
between thiamin cofactors in the Escherichia coli pyruvate dehydrogen-
ase complex E1 component active centers: Evidence for a “direct
pathway” between the 4′-aminopyrimidine N1′ atoms. J. Biol. Chem.
285, 11197−11209.
(21) Engel, S., Vyazmensky, M., Geresh, S., Barak, Z., and Chipman,
D. M. (2003) Acetohydroxyacid synthase: A new enzyme for chiral
synthesis of R-phenylacetylcarbinol. Biotechnol. Bioeng. 83, 833−840.
(22) Nemeria, N., Korotchkina, L., McLeish, M. J., Kenyon, G. L.,
Patel, M. S., and Jordan, F. (2007) Elucidation of the chemistry of
enzyme-bound thiamin diphosphate prior to substrate binding:
defining internal equilibria among tautomeric and ionization states.
Biochemistry 46, 10739−10744.
(23) Nemeria, N. S., Korotchkina, L. G., Chakraborty, S., Patel, M. S.,
and Jordan, F. (2006) Acetylphosphinate is the most potent
mechanism-based substrate-like inhibitor of both the human and
Escherichia coli pyruvate dehydrogenase components of the pyruvate
dehydrogenase complex. Bioorg. Chem. 34, 362−379.
(24) Kluger, R., and Tittmann, K. (2008) Thiamin Diphosphate
Catalysis: Enzymic and Nonenzymic Covalent Intermediates. Chem.
Rev. 108, 1797−1833.
(25) Nemeria, N. S., Chakraborty, S., Balakrishnan, A., and Jordan, F.
(2009) Reaction mechanisms of thiamin diphosphate enzymes:
Defining states of ionization and tautomerization of the cofactor at
individual steps (minireview). FEBS J. 276, 2432−2446.
(26) Balakrishnan, A., Paramasivam, S., Chakraborty, S., Polenova, T.,
and Jordan, F. (2012) Solid-State Nuclear Magnetic Resonance
Studies Delineate the Role of the Protein in Activation of Both
Aromatic Rings of Thiamin. J. Am. Chem. Soc. 134, 665−672.
(27) Paramasivam, S., Balakrishnan, A., Dmitrenko, O., Gobert, A.,
Begley, T. P., Jordan, F., and Polenova, T. (2011) Solid-state NMR
and density function theory studies of ionization states of thiamin. J.
Phys. Chem. 115, 730−736.
(28) Muller, Y. A., and Schulz, G. E. (1993) Structure of the thiamin-
and flavin-dependent enzyme pyruvate oxidase. Science 259, 965−967.
(29) Lindqvist, Y., Schneider, G., Ermler, U., and Sundstrom, M.
(1992) Three-dimensional structure of transketolase, a thiamine
diphosphate dependent enzyme, at 2.5 Å resolution. EMBO J. 11,
2373−2379.
(30) Dyda, F., Furey, W., Swamibathan, S., Sax, M., Farrenkopf, B.,
and Jordan, F. (1993) Catalytic centers in the thiamin diphosphate
dependent enzyme pyruvate decarboxylase at 2.4 Å resolution.
Biochemistry 32, 6165−6170.
(31) Arjunan, P., Umland, T., Dyda, F., Swaminathan, S., Furey, W.,
Sax, M., Farrenkopf, B., Gao, Y., Zhang, D., and Jordan, F. (1996)
Crystal structure of the thiamin diphosphate-dependent enzyme
pyruvate decarboxylase from yeast Saccharomyces cerevisiae at 2.3 Å
resolution. J. Mol. Biol. 256, 590−600.
(32) Sergienko, E. A., Wang, J., Polovnikova, L., Hasson, M. S.,
McLeish, M. J., Kenyon, G. L., and Jordan, F. (2000) Spectroscopic
Detection of Transient Thiamin Diphosphate-Bound Intermediates on
Benzoylformate Decarboxylase. Biochemistry 39, 13862−13869.
(33) Sergienko, E. A., and Jordan, F. (2002) Yeast pyruvate
decarboxylase tetramers can dissociate into dimers along two
interfaces. Hybrids of low-activity D28A (or D28N) and E477Q
variants, with substitution of adjacent active center acidic groups from
different subunits, display restored activity. Biochemistry 41, 6164−
6169.
(34) Bar-Ilan, A., Balan, V., Tittmann, K., Golbik, R., Vyazmensky,
M., Hubner, G., Barak, Z., and Chipman, D. M. (2001) Binding and
activation of thiamin diphosphate in acetohydroxyacid synthase.
Biochemistry 40, 11946−11954.
(35) Balakrishnan, A., Gao, Y., Moorjani, P., Nemeria, N., Tittmann,
K., and Jordan, F. (2012) Bifunctionality of the thiamin diphosphate
cofactor: Assignment of tautomeric/ionization states of the 4′-
aminopyrimidine ring when various intermediates occupy the active
sites during the catalysis of yeast pyruvate decarboxylase. J. Am. Chem.
Soc. 134, 3873−3885.
(12) Nemeria, N. S., Chakraborty, S., Balakrishnan, A., and Jordan, F.
(2009) Reaction mechanisms of thiamin diphosphate enzymes:
Defining states of ionization and tautomerization of the cofactor at
individual steps. FEBS J. 276, 2432−2446.
(13) Nemeria, N., Chakraborty, S., Baykal, A., Korotchkina, L. G.,
Patel, M. S., and Jordan, F. (2007) The 1′,4′-iminopyrimidine
tautomer of thiamin diphosphate is poised for catalysis in asymmetric
active centers on enzymes. Proc. Natl. Acad. Sci. U.S.A. 104, 78−82.
(14) Baykal, A. T., Kakalis, L., and Jordan, F. (2006) Electronic and
nuclear magnetic resonance spectroscopic features of the 1′,4′-
iminopyrimidine tautomeric form of thiamin diphosphate, a novel
intermediate on enzymes requiring this coenzyme. Biochemistry 45,
7522−7528.
(15) Baillie, A. C., Wright, B. J., and Wright, K. (1982) U.S. Patent
4,339,443.
(16) Shim, D. J., Nemeria, N. S., Balakrishnan, A., Patel, H., Song, J.,
Wang, J., Jordan, F., and Farinas, E. T. (2011) Assignment of function
to histidines 260 and 298 by engineering the E1 component of the
Escherichia coli 2-oxoglutarate dehydrogenase complex; substitutions
that lead to acceptance of substrates lacking the 5-carboxyl group.
Biochemistry 50, 7705−7709.
(17) Kluger, R., and Pike, D. C. (1977) Active site generated
analogues of reactive intermediates in enzymic reactions. Potent
inhibition of pyruvate dehydrogenase by a phosphonate analogue of
pyruvate. J. Am. Chem. Soc. 99, 4504−4506.
(18) Vinogradov, M., Kaplun, A., Vyazmensky, M., Engel, S., Golbik,
R., Tittmann, K., Uhlemann, K., Meshalkina, L., Barak, Z., Hubner, G.,
̈
and Chipman, D. M. (2005) Monitoring the acetohydroxy acid
synthase reaction and related carboligations by circular dichroism
spectroscopy. Anal. Biochem. 342, 126−133.
(36) Steinmetz, A., Vyazmensky, M., Meyer, D., Barak, Z., Golbik, R.,
Chipman, D. M., and Tittmann, K. (2010) Valine 375 and
Phenylalanine 109 Confer Affinity and Specificity for Pyruvate as
Donor Substrate in Acetohydroxy Acid Synthase Isozyme II from
Escherichia coli. Biochemistry 49, 5188−5199.
(19) Chung, S. T., Tan, R. T., and Suzuki, I. (1971) Glyoxylate
carboligase of Pseudomonas oxalaticus. A possible structural role for
flavine-adenine dinucleotide. Biochemistry 10, 1205−1209.
(20) Epelbaum, S., Chipman, D. M., and Barak, Z. (1990)
Determination of products of acetohydroxy acid synthase by the
colorimetric method, revised. Anal. Biochem. 191, 96−99.
7952
dx.doi.org/10.1021/bi300893v | Biochemistry 2012, 51, 7940−7952