2
58 Biomacromolecules, Vol. 12, No. 1, 2011
Voepel et al.
Table 1. Comparative Solubility Data
(9) Rosen, B. M.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2008,
4
6 (16), 5663–5697.
PMA-grafted
AcGGM at high
conversion
(
10) Jiang, X.; Fleischmann, S.; Nguyen, N. H.; Rosen, B. M.; Percec, V.
J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (21), 5591–5605.
11) Guliashvili, T.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2007,
45 (9), 1607–1618.
(12) Jiang, X. A.; Rosen, B. M.; Percec, V. J. Polym. Sci., Part A: Polym.
Chem. 2010, 48 (12), 2716–2721.
(13) Fleischmann, S.; Rosen, B. M.; Percec, V. J. Polym. Sci., Part A:
Polym. Chem. 2010, 48 (5), 1190–1196.
(14) Lligadas, G.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2008,
unmodified
AcGGM
solvent
macroinitiator
(
a
b
d
H
2
O
++
+
--
a
a
a
DMSO
DMF
DMAc
THF
++
++
++
b
b
a
+
+
++
d
a
a
--
++
++
d
d
c
--
--
--
-
d
d
c
CHCl
3
--
-
4
6 (20), 6880–6895.
a
b
c
d
+
+, easily soluble. +, slightly soluble. -, agglomeration. --,
(
(
(
15) Nguyen, N. H.; Jiang, X.; Fleischmann, S.; Rosen, B. M.; Percec, V.
J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (21), 5629–5638.
16) Nguyen, N. H.; Rosen, B. M.; Jiang, X.; Fleischmann, S.; Percec, V.
J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (21), 5577–5590.
17) Rosen, B. M.; Jiang, X.; Wilson, C. J.; Nguyen, N. H.; Monteiro,
M. J.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (21),
insoluble.
also observed during the synthesis and possibly preserved
in liquid media resulting in a marked increase in hydrody-
namic volume.
The poly(methyl acrylate), PMA, produced at high conver-
sion by the described SET-LRP approach using an AcGGM-
based macroinitiator have thermal properties similar to that
of conventional PMA as compared to unmodified AcGGM
that do not show any clear-cut glass transition. PMA derived
by AcGGM-initiated SET-LRP with an initiator concentration
of 4.16 mmol/L are amorphous with a glass transition
5
606–5628.
18) Nguyen, N. H.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2010,
8 (22), 5109–5119.
(
(
4
19) Wright, P. M.; Mantovani, G.; Haddleton, D. M. J. Polym. Sci., Part
A: Polym. Chem. 2008, 46 (22), 7376–7385.
(20) Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. J. Polym. Sci., Part
A: Polym. Chem. 2009, 47 (15), 3940–3948.
(
21) Lligadas, G.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2007,
4
5, 4684–4695.
(
22) Zhai, S.; Wang, B.; Feng, C.; Li, Y.; Yang, D.; Hu, J.; Lu, G.; Huang,
temperature (T
is typically amorphous with a T
g
) between 15.7 and 19.7 °C. Commercial PMA
X. J. Polym. Sci., Part A: Polym. Chem. 2010, 48 (3), 647–655.
(23) Sienkowska, M. J.; Rosen, B. M.; Percec, V. J. Polym. Sci., Part A:
Polym. Chem. 2009, 47 (16), 4130–4140.
5
3
g
around 6-9 °C. The
solubility properties for unmodified AcGGM, the AcGGM-
derived macroinitiator, and PMA-grafted AcGGM at high
conversion is summarized in Table 1.
(
(
(
(
(
24) Fleischmann, S.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2010,
8 (10), 2236–2242.
25) Syrett, J. A.; Jones, M. W.; Haddleton, D. M. Chem. Commun. 2010,
6 (38), 7181–7183.
4
4
26) Tang, X.; Liang, X.; Yang, Q.; Fan, X.; Shen, Z.; Zhou, Q. J. Polym.
Sci., Part A: Polym. Chem. 2009, 47 (17), 4420–4427.
27) Potisek, S. L.; Davis, D. A.; Sottos, N. R.; White, S. R.; Moore, J. S.
J. Am. Chem. Soc. 2007, 129, 13808–13809.
28) Nguyen, N. H.; Rosen, B. M.; Percec, V. J. Polym. Sci., Part A: Polym.
Chem. 2010, 48 (8), 1752–1763.
Conclusions
The hemicellulose acetylated galactoglucomannan (AcGGM)
was successfully functionalized by R-bromoisobutyric acid to
a degree of substitution of 0.15 yielding a new and effective
multifunctional macroinitiator for SET-LRP. SET-LRP of MA
(29) Zoppe, J. O.; Habibi, Y.; Rojas, O. J.; Venditti, R. A.; Johansson,
0
L.-S.; Efimenko, K.; O I` sˇ terberg, M.; Laine, J. Biomacromolecules
was performed at 25 °C catalyzed by Cu /Me
6
-TREN and the
2
010, 11 (10), 2683–2691.
AcGGM-based macroinitiator yielding graft copolymers with
(
(
(
(
30) Hatano, T.; Rosen, B. M.; Percec, V. J. Polym. Sci., Part A: Polym.
Chem. 2009, 48 (1), 164–172.
31) Tom, J.; Hornby, B.; West, A.; Harrisson, S.; Perrier, S. Polym. Chem.
2010, 1 (4), 420–422.
32) Ding, S.; Floyd, J. A.; Walters, K. B. J. Polym. Sci., Part A: Polym.
Chem. 2009, 47 (23), 6552–6560.
33) Fleischmann, S.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2010,
-
1
molecular weights ranging from 4300 to 263,000 g mol . The
initiator concentration is limited by the tendency of product
gelation. Kinetic analyses confirm the living character of the
polymerizations and reveal a more rapid propagation in DMSO
2
than in DMF or DMSO/H O (90:10% v/v) proceeding to almost
full conversions regardless of the solvent used. AcGGM-initiated
SET-LRP of MA is a powerful approach to the design of hybrid
graft glycopolymers.
4
8 (10), 2251–2255.
(34) Fleischmann, S.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2010,
48 (10), 2243–2250.
(
(
(
(
(
(
35) Fleischmann, S.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2010,
48 (21), 4889–4893.
36) Fleischmann, S.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2010,
Acknowledgment. The authors gratefully acknowledge KTH
and Formas (Project No. 243-2008-129) and for financial
support.
4
8 (21), 4884–4888.
37) Matyjaszewski, K.; Dong, H.; Jakubowski, W.; Pietrasik, J.; Kusumo,
A. Langmuir 2007, 23 (8), 4528–4531.
38) Min, K.; Jakubowski, W.; Matyjaszewski, K. Macromol. Rapid
Commun. 2006, 27 (8), 594–598.
39) Hartman, J.; Albertsson, A. C.; Lindblad, M. S.; Sj o¨ berg, J. J. Appl.
Polym. Sci. 2006, 100 (4), 2985–2991.
40) Hartman, J.; Albertsson, A. C.; Sj o¨ berg, J. Biomacromolecules 2006,
References and Notes
(
1) Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl,
A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. J. Am. Chem. Soc.
2
006, 128 (43), 14156–14165.
(
(
2) Rosen, B. M.; Percec, V. Chem. ReV. 2009, 109 (11), 5069–5119.
3) Matyjaszewski, K.; Tsarevsky, N. V.; Braunecker, W. A.; Dong, H.;
Huang, J.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon,
J. A. Macromolecules 2007, 40 (22), 7795–7806.
7
(6), 1983–1989.
(41) Lindblad, M. S.; Sj o¨ berg, J.; Albertsson, A. C.; Hartman, J. ACS Symp.
Ser. 2007, 954, 153–167.
(42) Edlund, U.; Ryberg, Y. Z.; Albertsson, A. C. Biomacromolecules 2010,
11 (9), 2532–2538.
(43) Roos, A. A.; Edlund, U.; Sj o¨ berg, J.; Albertsson, A. C.; Stalbrand, H.
Biomacromolecules 2008, 9 (8), 2104–2110.
(
4) Lligadas, G.; Rosen, B. M.; Monteiro, M. J.; Percec, V. Macromol-
ecules 2008, 41 (22), 8360–8364.
(
5) Lligadas, G.; Rosen, B. M.; Bell, C. A.; Monteiro, M. J.; Percec, V.
Macromolecules 2008, 41 (22), 8365–8371.
(
(
(
6) Nguyen, N. H.; Rosen, B. M.; Lligadas, G.; Percec, V. Macromolecules
(44) Voepel, J.; Sj o¨ berg, J.; Reif, M.; Albertsson, A. C.; Hultin, U. K.;
Gasslander, U. J. Appl. Polym. Sci. 2009, 112 (4), 2401–2412.
(45) Voepel, J.; Edlund, U.; Albertsson, A. C. J. Polym. Sci., Part A: Polym.
Chem. 2009, 47 (14), 3595–3606.
(46) Albertsson, A. C.; Voepel, J.; Edlund, U.; Dahlman, O.; S o¨ derqvist-
Lindblad, M. Biomacromolecules 2010, 11 (5), 1406–1411.
2
009, 42 (7), 2379–2386.
7) Monteiro, M. J.; Guliashvili, T.; Percec, V. J. Polym. Sci., Part A:
Polym. Chem. 2007, 45 (10), 1835–1847.
8) Rosen, B. M.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2007,
4
5 (21), 4950–4964.