2490 Liu et al.
Macromolecules, Vol. 38, No. 6, 2005
micelles N ≈ 1100 (MW ∼5 × 105). Therefore, from eq
9, tm ≈ 1-20 s. This time is considerably longer than
typical spherical micelle lifetimes of 10-2-10-1 s.25
In addition, the aggregation number of the micelles
fluctuates around N due to the diffusion of surfactant
monomers in to and out of the micelle. This flow of
surfactant is important since unreacted monomer can
migrate from one micelle to another during the course
of the reaction. The time scale for association of a
monomer species, ta, is given by (k+cac)-1, where the
Acknowledgment. We acknowledge the support of
the National Science Foundation CTS-9814399. The
National Institute of Standards and Technology, Gaith-
ersburg, MD, provided neutron scattering facilities used
in this work. P. A. Hassan, G. M. Santonicola, and S.
R. Kline provided insightful comments about scattering
data analysis. The cryo-TEM studies were performed
at the “Cryo-TEM Hannah and George Krumholz Labo-
ratory for Advanced Microscopy” at the Technion, part
of the “Technion Project on Complex Fluids”.
association rate constant is k+ ≈ 109 (M s)-1 55
.
Thus, ta
≈ 5 × 10-7 s, so that monomers are continuously
entering micelles and can potentially be incorporated
into the growing chain of an initiated micelle.
References and Notes
(1) Magid, L. J.; Li, Z.; Butler, P. D. Langmuir 2000, 16, 10028-
10036.
Lastly, the speed at which an oligomeric chain grows
mainly depends on the time it takes a monomer to add
to the growing chain. This time is given by tp ) (kp[M])-1
where kp ≈ 1000 (M s)-1 for n-alkyl methacrylates, n >
10, and [M] is the monomer concentration.56 For the
solutions at [MUTB] ) 50 mM, tp ) 2 × 10-2 s at the
beginning of the reaction, a value which is 2 orders of
magnitude shorter than the micelle lifetime of 1-20 s
but much longer than the time for the association of a
surfactant monomer to a micelle.
Radicals formed by the decomposition of water-soluble
initiators rapidly partition into micelles. The entry of
these radicals probably follows the Maxwell-Morrison
model for radical entry in emulsion polymerization.57
In microemulsion polymerization,58 this model has
accounted well for the entry of radicals into the monomer-
swollen micelles and seems applicable here, since the
methacryloyl group of the polymerizable surfactant is
condensed at the core of the micelles. In addition, the
number of micelles far exceeds the number of radicals,
and therefore the probability of more than one radical
entering a micelle is negligible.
Because the time required for a propagation step is
shorter than the average micelle lifetime, oligomeric
radicals form during the average micelle lifetime. The
length of these oligomeric radicals, given by the ratio
of tm/tp calculated above, is 50-1100 units. These
oligomers polymerized within the core of the micelles
likely fix the micelle radius. As shown above, the time
required for the association of a surfactant monomer to
a micelle is much shorter than the time required for a
monomer to incorporate to the growing radical. Thus,
the uniaxial growth of these chains results from the
addition of monomeric surfactant from unnucleated
micelles to oligomeric micelles and proceeds until the
reaction reaches nearly complete conversion. The growth
of these oligomeric chains gives rise to a polymer of high
molecular weight.
(2) Magid, L. J. J. Phys. Chem. B 1998, 102, 4064-4074.
(3) Khatory, A.; Lequeux, F.; Kern, F.; Candau, S. J. Langmuir
1993, 9, 1456-1464.
(4) Aswal, V. K.; Goyal, P. S. Phys. Rev. E 2000, 61, 2947-2953.
(5) Ali, A. A.; Makhloufi, R. Phys. Rev. E 1997, 56, 4474-4478.
(6) Rehage, H.; Hoffmann, H. J. Phys. Chem. 1988, 92, 4712-
4719.
(7) Soltero, J. F. A.; Puig, J. E.; Manero, O. Langmuir 1996, 12,
2654-2662.
(8) Carver, M.; Smith, T. L.; Gee, J. C.; Delichere, A.; Caponetti,
E.; Magid, L. J. Langmuir 1996, 12, 691-698.
(9) Mishra, B. K.; Samant, S. D.; Pradhan, P.; Mishra, S. B.;
Manohar, C. Langmuir 1993, 9, 894-898.
(10) Imae, T.; Kamiya, R.; Ikeda, S. J. Colloid Interface Sci. 1985,
108, 215-225.
(11) Yatcilla, M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E.
W.; Chiruvolu, S.; Zasadzinski, J. A. J. Phys. Chem. 1996,
100, 5874-5879.
(12) Soderman, O.; Herrington, K. L.; Kaler, E. W.; Miller, D. D.
Langmuir 1997, 13, 5531-5538.
(13) Hyde, A. J.; Johnstone, D. W. M. J. Colloid Interface Sci.
1975, 53, 349-357.
(14) Balasubramanian, D.; Srinivas, V.; Gaikar, V. G.; Sharma,
M. M. J. Phys. Chem. 1989, 93, 3865-3870.
(15) Manohar, C.; Rao, U. R. K.; Valaulikar, B. S.; Iyer, R. M. J.
Chem. Soc., Chem. Commun. 1986, 379-381.
(16) Candau, S. J.; Hirsch, E.; Zana, R.; Adam, M. J. Colloid
Interface Sci. 1988, 122, 430-440.
(17) Lin, Z. Langmuir 1996, 12, 1729-1737.
(18) Cates, M. E. Macromolecules 1987, 20, 2289-2296.
(19) Hoffmann, H.; Ulbricht, W. J. Colloid Interface Sci. 1989, 129,
388-405.
(20) Brackman, J. C.; Engberts, J. J. Am. Chem. Soc. 1990, 112,
872-873.
(21) Paleos, C. M. Polymerization in Organized Media; Gordon
and Breach: Philadelphia, 1992.
(22) Larrabee, C. E.; Sprague, E. D. J. Polym. Sci., Part C: Polym.
Lett. 1979, 17, 749-757.
(23) Lerebours, B.; Perly, B.; Pileni, M. P. Chem. Phys. Lett. 1988,
147, 503-508.
(24) Hamid, S.; Sherrington, D. J. Chem. Soc., Chem. Commun.
1986, 936-938.
(25) Cochin, D.; Zana, R.; Candau, F. Macromolecules 1993, 26,
5765-5771.
(26) Hamid, S. M.; Sherrington, D. C. Polymer 1987, 28, 332-
339.
(27) McGrath, K. M.; Drummond, C. J. Colloid Polym. Sci. 1996,
274, 316-333.
Conclusions
(28) Thundathil, R.; Stoffer, J. O.; Friberg, S. E. J. Polym. Sci.,
Part A: Polym. Chem. 1980, 18, 2629-2640.
(29) Kline, S. R. Langmuir 1999, 15, 2726-2732.
(30) Becerra, F.; Soltero, J. F. A.; Puig, J. E.; Schulz, P. C.;
Esquena, J.; Solans, C. Colloid Polym. Sci. 2003, 282, 103-
109.
Addition of the hydrotropic salt sodium tosylate
(TSNa) to solutions of a polymerizable cationic surfac-
tant, methacryloyloxyundecyltrimethylammonium bro-
mide (MUTB), leads to a transition from spherical to
wormlike micelles. The intercalation of the hydrophobic
portion of the tosylate with the surfactant headgroups
drives this micellar elongation phenomenon. The worm-
like micelles are then polymerized to “lock-in” the
threadlike architecture, and longer wormlike micelles
with the same cross-sectional radius as the unpolymer-
ized micelles are obtained after polymerization. A mech-
anism that considers the dynamic nature of the micelles
and the speed of the propagation step can account for
the growth of the micelles.
(31) Gerber, M. J. K. S. R.; Walker, L. M. Langmuir 2004, 20,
8510-8516.
(32) Liu, S. Y.; Gonzalez, Y. I.; Kaler, E. W. Langmuir 2003, 19,
10732-10738.
(33) Michas, J.; Paleos, C. M.; Dais, P. Liq. Cryst. 1989, 5, 1737-
1745.
(34) Koppel, D. E. J. Chem. Phys. 1972, 57, 4814.
(35) Barker, J. G.; Pedersen, J. S. J. Appl. Crystallogr. 1995, 28,
105-114.
(36) Koehler, R. D.; Raghavan, S. R.; Kaler, E. W. J. Phys. Chem.
B 2000, 104, 11035-11044.