10.1002/anie.202106237
Angewandte Chemie International Edition
RESEARCH ARTICLE
[5] a) C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Nat. Commun.
2015, 6, 1-9; b) D. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K.
Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626-632; c) Q. Yun, Y.-B.
He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.-H. Yang, Adv. Mater. 2016, 28,
6932-6939.
lower capacity of CGPEs compared to the LE. This effect was
more pronounced in the case of F-IL-GEL-5% as evidenced by
the lower capacity compared to the F-IL-GEL-3% presumably due
to its higher crosslinking density. Li-S full cell with F-IL-GEL-3%
exhibited superior performance at high rates which largely
maintained its capacity during cycling at different C-rates, while
Li-S cell with LE lost its capacity during the same cycling process
(Figure S24).
[6] F. Han, J. Yue, C. Chen, N. Zhao, X. Fan, Z. Ma, T. Gao, F. Wang, X. Guo,
C. Wang, Joule 2018, 2, 497-508.
[7] D. Lei, Y.-B. He, H. Huang, Y. Yuan, G. Zhong, Q. Zhao, X. Hao, D. Zhang,
C. Lai, S. Zhang, Nat. Commun. 2019, 10, 1-11.
[8] X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Adv. Energy Mater. 2018, 8,
1702184.
[9] D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Chem 2019,
5, 2326-2352.
Conclusion
[10] G. Li, Y. Gao, X. He, Q. Huang, S. Chen, S. H. Kim, D. Wang, Nat.
Commun. 2017, 8, 1-10.
We demonstrated a new type of cross-linked gel polymer
electrolyte containing imidazolium ionic liquid end groups bearing
a fluorinated alkyl chain, providing both high ionic conductivity and
high Li ion transference number. Specifically, these exceptional
properties were enabled by the Lewis acidic nature of the polymer
backbone that reduced the mobility of Li salt anion, and played a
crucial role for uniform Li plating and for restraining Li dendrite
growth during cycling. This study highlights the impact of
molecular level engineering of polymer gel electrolytes in
controlling the two critical parameters, Li+ conductivity and
transference number, to achieve stable cycling of Li metal anodes
and can be expanded to other metallic anode systems that suffer
similarly from dendrite growth and interfacial instability.
[11] a) L. Porcarelli, A. S. Shaplov, F. Bella, J. R. Nair, D. Mecerreyes, C.
Gerbaldi, ACS Energy Lett. 2016, 1, 678-682; b) D. M. Shin, J. E.
Bachman, M. K. Taylor, J. Kamcev, J. G. Park, M. E. Ziebel, E. Velasquez,
N. N. Jarenwattananon, G. K. Sethi, Y. Cui, Adv. Mater. 2020, 32,
1905771.
[12] a) C. Wang, A. Wang, L. Ren, X. Guan, D. Wang, A. Dong, C. Zhang, G.
Li, J. Luo, Adv. Funct. Mater. 2019, 29, 1905940; b) P. Jaumaux, Q. Liu, D.
Zhou, X. Xu, T. Wang, Y. Wang, F. Kang, B. Li, G. Wang, Angew. Chem.
Int. Ed. 2020, 59, 9134-9142.
[13] Y. Lu, K. Korf, Y. Kambe, Z. Tu, L. A. Archer, Angew. Chem. Int. Ed.
2014, 53, 488-492.
[14] D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308-319.
[15] D. H. Wong, J. L. Thelen, Y. Fu, D. Devaux, A. A. Pandya, V. S. Battaglia,
N. P. Balsara, J. M. DeSimone, Proc. Natl. Acad. Sci. U.S.A 2014, 111,
3327-3331.
[16] D. Rauber, F. Heib, M. Schmitt, R. Hempelmann, J. Mol. Liq. 2016, 216,
246-258.
Acknowledgements
[17] C. Yuan, J. Guo, F. Yan, Polymer 2014, 55, 3431-3435.
[18] M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin, C. Miao, H. Du, B. Li, Q.-H.
Yang, Z. Lin, T. S. Zhao, F. Kang, Nano Energy 2016, 22, 278-289.
[19] H. Zhang, J. Ou, Y. Wei, H. Wang, Z. Liu, L. Chen, H. Zou, Anal. Chim.
Acta 2015, 883, 90-98.
A.C. acknowledges the support from the Swiss National Science
Foundation (SNF) for funding of this research (200021-188572).
J.W.C. acknowledges the support by the National Research
Foundation
of
Korea
(NRF)
grants
(NRF-
[20] M. Zaheer, H. Xu, B. Wang, L. Li, Y. Deng, J. Electrochem. Soc. 2019,
167, 070504.
2021R1A2B5B03001956 and NRF-2018M1A2A2063340), the
Technology Innovation Program (20012341) funded by the
Ministry of Trade, Industry & Energy (MOTIE) of Korea and
generous support from the Institute of Engineering Research
(IOER) and Inter-university Semiconductor Research Center
(ISRC) at Seoul National University. We would like to thank Dr
Mario El Kazzi at PSI for XPS analysis and Dr Véronique Trappe
at University of Fribourg for rheology analysis.
[21] M. V. Reddy, K. R. Byeon, S. H. Park, D. W. Kim, Tetrahedron 2017, 73,
5289-5296.
[22] H. J. Sand, Lond. Edinb. Dubl. Phil. Mag. 1901, 1, 45-79.
[23] F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi, L. Wang, X.-D.
Zhang, Y. Zheng, J.-J. Zhou, L. Li, Sci. Adv. 2018, 4, eaat5383.
[24] H. Zhong, C. Wang, Z. Xu, F. Ding, X. Liu, Sci. Rep. 2016, 6, 1-7.
[25] a) Y. Wang, L. Fu, L. Shi, Z. Wang, J. Zhu, Y. Zhao, S. Yuan, ACS Appl.
Mater. Interfaces 2019, 11, 5168-5175; b) C. H. Park, D. W. Kim, J.
Prakash, Y.-K. Sun, Solid State Ionics 2003, 159, 111-119; c) C. F.
Marchiori, R. P. Carvalho, M. Ebadi, D. Brandell, C. M. Araujo, Chem.
Mater. 2020, 32, 7237-7246; d) W. Zhou, S. Wang, Y. Li, S. Xin, A.
Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2016, 138, 9385-9388.
[26] Q. Lu, Y. B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, Q. H. Yang,
Adv. Mater. 2017, 29, 1604460.
Keywords: ionic liquid • gel polymer electrolyte • Li metal anode
• ionic conductivity • Li ion transference number
[1] a) J. M. Tarascon, M. Armand, Nature 2001, 414, 359-367; b) X. B. Cheng,
R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403-10473; c)
J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1; d) P. G. Bruce, S. A.
Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2011, 11, 19-29.
[2] a) M. D. Tikekar, S. Choudhury, Z. Tu, L. A. Archer, Nat. Energy 2016, 1, 1-
7; b) D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194-206; c) D. Lin,
Y. Liu, A. Pei, Y. Cui, Nano Res. 2017, 10, 4003-4026.
[27] H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, J. Wang, H. Wang,
F. Shi, Adv. Energy Mater. 2019, 9, 1900858.
[28] G. L. Shebert, S. Zamani, C. Yi, Y. L. Joo, J. Mater. Chem. A 2020, 8,
4341-4353.
[3] a) J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, W.
Xu, Nat. Energy 2017, 2, 1-8; b) H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, J.
Am. Chem. Soc. 2018, 140, 17515-17521; c) T. Zhou, Y. Zhao, M. El
Kazzi, J. W. Choi, A. Coskun, ACS Energy Lett. 2021, 1711-1718.
[4] a) G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang, F. Wang, Y. Liu, X.
Xiong, Angew. Chem. Int. Ed. 2020, 59, 2055-2060; b) T. Zhou, Y. Zhao, J.
W. Choi, A. Coskun, Angew. Chem. Int. Ed. 2019, 58, 16795-16799; c) C.
Yan, X. B. Cheng, Y. Tian, X. Chen, X. Q. Zhang, W. J. Li, J. Q. Huang, Q.
Zhang, Adv. Mater. 2018, 30, 1707629; d) Y. Liu, D. Lin, P. Y. Yuen, K.
Liu, J. Xie, R. H. Dauskardt, Y. Cui, Adv. Mater. 2017, 29, 1605531.
5
This article is protected by copyright. All rights reserved.