Developing the Kharasch Reaction in Aqueous Media
A. F. Noels, Top. Organomet. Chem. 2004, 11, 155–171; d) K.
Severin, Curr. Org. Chem. 2006, 10, 217–224.
[27] Note that, as observed with the ruthenium catalyst, the use of
an organic solvent such as toluene produces a lower activity
than that obtained in water (46% and 42% yield after 3 h using
5 and 6, respectively). The 1:1 and 1:2 adducts between the 1,4-
[
15] This spectrum has been simulated with the gNMR v.4.1 soft-
3
1
ware (Adept Scientific plc), leading to JP,P and JRh,P coupling
3
constants of 72 and 206 Hz, respectively. A similar JP,P value
3
cyclooctadiene ligand and BrCCl , i.e. bromo(trichloromethyl)-
1
83
(
75 Hz) could be extracted from the W satellite peaks in the
cyclooctene and dibromobis(trichloromethyl)cyclooctane, have
not been detected during the analyses of the crude reaction
mixtures by means of NMR or GC/MSD techniques.
[28] Solubilization of trace amounts of the catalysts in the organic
phase can not be totally discarded.
3
1
1
P{ H} spectrum of the related dinuclear species [{(CO)
W}
2
(µ-THDP)] (see ref.[ ). The JRh,P value is also in accord
11b]
1
5
with those usually observed in phosphane-rhodium(I) com-
1
plexes. As an example, JRh,P = 199 Hz has been reported for
4
the tris(dimethylamino)phosphane derivative [RhCl(η -
[29]
See for example: P. Alvarez, M. Bassetti, J. Gimeno, G. Man-
cini, Tetrahedron Lett. 2001, 42, 8467–8470 and references cited
therein.
2 3
cod){P(NMe ) }]: C. J. Elsevier, B. Kowall, H. Kragten, Inorg.
Chem. 1995, 34, 4836–4839.
[
16] Data corresponding to the minor occupancy are the following
[
30] The critical micelle concentrations of CTABr and SDS are
(
bond lengths in Å and angles in deg): P(1)–N(11) 1.610(14),
P(1)–N(12) 1.826(16), P(1)–N(13) 1.718(18), N(11)-N(13a)
.48(2), N(12)–N(12a) 1.51(3), N(11)–C(11) 1.468(9), N(12)–
C(12) 1.510(9), N(13)–C(13) 1.531(9), Ru(1)–P(1)–N(11)
–3
–3
8
ϫ10 and 9ϫ10 , respectively, the use of 0.05 solu-
tions of these surfactants assuring therefore the correct forma-
tion of micelles: a) J. H. Fendler, E. J. Fendler, Catalysis in Mi-
cellar and Macromolecular Systems, Academic Press, New
York, 1975; b) K. Furton, A. Norelus, J. Chem. Educ. 1993, 70,
1
117.9(5), Ru(1)–P(1)–N(12) 112.3(5), Ru(1)–P(1)–N(13)
120.0(6), N(11)–P(1)–N(12) 101.8(7), N(11)–P(1)–N(13)
100.8(8), N(12)–P(1)–N(13) 101.2(6), P(1)–N(11)–N(13a)
119.3(10), P(1)–N(12)–N(12a) 109.4(4), P(1)–N(13)–N(11a)
108.0(10), P(1)–N(11)–C(11) 124.9(10), P(1)–N(12)–C(12)
111.9(9), P(1)–N(13)–C(13) 116.8(11).
2
54–257. Under these reaction conditions the organometallic
catalyst is completely soluble in the aqueous phase.
[
31] See for example: a) J. Tsuji, K. Sato, H. Nagashima, Chem.
Lett. 1981, 1169–1170; b) J. Tsuji, K. Sato, H. Nagashima, Tet-
rahedron 1985, 41, 393–397; c) R. G. Gasanov, F. M. Dolgu-
shin, A. I. Yanovsky, Z. S. Klemenkova, B. V. Lokshin, P. V.
Petrovsky, M. I. Rybinskaya, Russ. Chem. Bull. 1997, 46, 1125–
[
[
17] C. S. Allardyce, P. J. Dyson, D. J. Ellis, S. L. Heath, Chem.
Commun. 2001, 1396–1397.
18] a) M. S. Kharasch, H. Engelmann, F. R. Mayo, J. Org. Chem.
1130.
1937, 2, 288–302; b) M. S. Kharasch, E. V. Jensen, W. H. Urry,
[26]
[
32] a) As commented in ref.
the real catalytically active species
Science 1945, 102, 128; c) M. S. Kharasch, W. H. Urry, E. V.
Jensen, J. Am. Chem. Soc. 1945, 67, 1626; d) M. S. Kharasch,
E. V. Jensen, W. H. Urry, J. Am. Chem. Soc. 1946, 68, 154–155;
e) M. S. Kharasch, E. V. Jensen, W. H. Urry, J. Am. Chem. Soc.
derived from complex 4 are presumably generated by dissoci-
ation of the p-cymene ligand. The competitive coordination of
the amines to ruthenium can therefore be evoked to explain
these results. This inhibiting effect is strongly marked in the
case of pyridine whose great ability to act as a two-electron
donor ligand is well known. b) The coordinating effect of
pyridine is also reflected in the catalytic behavior of 5–6, the
experiments performed in the presence of pyridine leading to
remarkably lower yields (entry 8 vs. entry 5 and entry 12 vs.
entry 9).
1
947, 69, 1100–1105; f) M. S. Kharasch, O. Reinmuth, W. H.
Urry, J. Am. Chem. Soc. 1947, 69, 1105–1110.
[
19] For recent examples, see: a) A. Zazybin, O. Osipova, U. Khus-
nutdinova, I. Aristov, B. Solomonov, F. Sokolov, M. Babash-
kina, N. Zabirov, J. Mol. Catal. A 2006, 253, 234–238; b) W. T.
Eckenhoff, T. Pintauer, Inorg. Chem. 2007, 46, 5844–5846; c)
J. M. Muñoz-Molina, A. Caballero, M. M. Díaz-Requejo, S.
Trofimenko, T. R. Balderraín, P. J. Pérez, Inorg. Chem. 2007,
[
[
[
33] As shown in Table 4 (entry 10), the ruthenium complex 4 was
3
completely inactive in the Kharasch addition of BrCCl to sty-
46, 7428–7435.
6
rene. We suggest that the ability of styrene to act as a η -arene
[
20] For recent examples, see: a) V. Pandarus, D. Zargarian, Chem.
Commun. 2007, 978–980; b) V. Pandarus, D. Zargarian, Orga-
nometallics 2007, 26, 4321–4334.
ligand blocking the metal may be responsible for this behavior.
This supposition is in complete accord with the observations
[26]
made in ref.
.
[
21] For recent examples, see: a) L. Quebatte, K. Thommes, K. Se-
verin, J. Am. Chem. Soc. 2006, 128, 7440–7441; b) A. Richel,
A. Demonceau, A. F. Noels, Tetrahedron Lett. 2006, 47, 2077–
34] See for example: a) S.-K. Khan, C.-H. Park, S.-G. Kim, W.-T.
Oh, Bull. Korean Chem. Soc. 1991, 12, 716–717; b) T. Naka-
mura, H. Yorimitsu, H. Shinokubo, K. Oshima, Synlett 1998,
2081.
1
351–1352; c) B. C. Gilbert, W. Kalz, C. I. Lindsay, P. T.
[
22] D. Motoda, H. Kinoshita, H. Shinokubo, K. Oshima, Adv.
McGrail, A. F. Parsons, D. T. E. Whittaker, J. Chem. Soc., Per-
kin Trans. 1 2000, 1187–1194.
Synth. Catal. 2002, 344, 261–265.
[
23] We note that complexes [Mn (CO) ] and [MnBr(CO) ] have
2
10
5
35] The involvement of rhodium complexes in catalytic Kharasch
reactions has been scarcely documented: a) S. Murai, R. Sugise,
N. Sonoda, Angew. Chem. Int. Ed. Engl. 1981, 20, 475–476; b)
C. J. Cable, H. Adams, N. A. Bailey, J. Crosby, C. White, J.
Chem. Soc., Chem. Commun. 1991, 165–166; c) L. Quebatte,
R. Scopelleti, K. Severin, Angew. Chem. Int. Ed. 2004, 43,
been found to be active catalysts under biphasic H
2
2 2
O/CH Cl
conditions: N. Huther, P. T. McGrail, A. F. Parsons, Eur. J.
Org. Chem. 2004, 1740–1749.
[
[
24] Et B-promoted Kharasch-type additions in pure aqueous me-
3
dia have also been reported. See for example: H. Yorimitsu, H.
Shinokubo, S. Matsubara, K. Oshima, K. Omoto, H. Fujim-
oto, J. Org. Chem. 2001, 66, 7776–7785.
1520–1524.
[36] M. A. Bennett, T. N. Huang, T. W. Matheson, A. K. Smith, In-
org. Synth. 1982, 21, 74–78.
25] It is interesting to note that, under the same reaction condi-
tions (water/room temp./1 mol-% of Ru), the catalytic activity
[
37] a) G. Giordano, R. H. Crabtree, Inorg. Synth. 1979, 19, 218–
220; b) G. Giordano, R. H. Crabtree, Inorg. Synth. 1990, 28,
88–90.
of complex 4 is higher than that of the water-soluble PTA-
6
based derivative [RuCl
3
2
(η -p-cymene)(PTA)] (36% yield after
6
h) and comparable to that of [RuCl
2
(η -p-cymene)(THPA)]
[
[
[
38] J. L. Herde, J. C. Lambert, C. V. Senoff, Inorg. Synth. 1974, 15,
(
65% yield after 3 h).
18–20.
[
26] The efficiency of complex 4 is strongly affected when the cata-
lytic aqueous reactions are performed in the presence of free
p-cymene showing that the real catalytically active species are
generated by dissociation of the arene ligand (50% and 0%
yield after 3 h when a p-cymene/Ru ratio of 20 and 100, respec-
tively, is employed).
39] K. Maruoka, H. Sano, Y. Fukutani, H. Yamamoto, Chem.
Lett. 1985, 1689–1692.
40] D. J. Burton, L. J. Kehoe, J. Org. Chem. 1970, 35, 1339–1342.
[41] J. G. Traynham, T. M. Couvillon, J. Org. Chem. 1967, 32, 529–
532.
Eur. J. Inorg. Chem. 2008, 786–794
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
793