*
Tsuji et al.: NO formation by ion–ion neutralization reactions
2709
9
action, because the formation of the upper C and D states is
͑a͒ B. Peart and D. A. Hayton, J. Phys. B 25, 5109 ͑1992͒; ͑b͒ D. A.
Hayton and B. Peart, J. Phys. B 28, L279 ͑1995͒.
energetically closed. Only the Јϭ0 level was excited in the
v
10 J. Weiner, W. B. Peatman, and R. S. Berry, Phys. Rev. A 4, 1824 ͑1971͒.
11 H.-T. Wang, Chem. Phys. Lett. 136, 487 ͑1987͒.
12 M. Tsuji, in Trends in Physical Chemistry ͑Council of Science Informa-
tion, Trivandrum, India, 1995͒, Vol. 5, p. 25.
formation of the C and D states by the NOϩ/C6F5ClϪ and
NOϩ/C6F5BrϪ reactions and in the formation of the A state
in the NOϩ/C FϪ reaction. On the other hand, the Јϭ0 and
v
6
5
1 levels of NO(A) were produced in the NOϩ/C6F5ClϪ and
13 D. Smith, N. G. Adams, and M. J. Church, J. Phys. B 11, 4041 ͑1978͒.
14 M. Tsuji, H. Ishimi, M. Nakamura, Y. Nishimura, and H. Obase, J. Chem.
Phys. 102, 2479 ͑1995͒.
NOϩ/C6F5BrϪ reactions, though the relative populations of
ϭ1 are small. The small vibrational excitation of NO(A)
vЈ
15 M. Tsuji, H. Ishimi, Y. Nishimura, and H. Obase, J. Chem. Phys. 102,
6013 ͑1995͒.
in the NOϩ/C6F5ClϪ and NOϩ/C6F5BrϪ reactions can be ex-
plained as due to the perturbation of the NOϩ(X) potential
by an access of the negative ion. The rotational temperatures
16 M. Tsuji, H. Ishimi, Y. Nishimura, and H. Obase, Int. J. Mass Spectrom.
Ion Process. 145, 165 ͑1995͒.
17 M. Tsuji, H. Ishimi, and Y. Nishimura, Chem. Lett. 1995, 873.
18 F. Federer, W. Dobler, F. Howorka, W. Lindinger, M. Durup-Ferguson,
and E. E. Ferguson, J. Chem. Phys. 83, 1032 ͑1985͒.
19 W. P. West, T. B. Cook, F. B. Dunning, R. D. Rundel, and R. F.
Stebbings, J. Chem. Phys. 63, 1237 ͑1975͒.
of NO(A: Јϭ0,1), NO(C: Јϭ0), and NO(D: Јϭ0) were
v
v
v
expressed by single Boltzmann rotational temperatures of
450Ϯ100, 300Ϯ50, and 400Ϯ50 K, respectively. The vibra-
tional and rotational distributions indicated that only 1%–
11% of the total excess energy is partitioned into the rovi-
20 L. G. Piper and L. M. Cowles, J. Chem. Phys. 85, 2419 ͑1986͒, and
references therein.
*
brational energy of NO . It was therefore concluded that a
21 L. G. Piper, T. R. Tucker, and W. P. Cummings, J. Chem. Phys. 94, 7667
͑1991͒.
major part of the excess energy is partitioned into the relative
translational energy of the products and the vibrational en-
ergy of C6F5X. The observed vibrational and rotational dis-
tributions disagreed from statistical prior ones, indicating
that the reaction dynamics is not governed by the simple
statistical theory because of the large impact parameter.
22 K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Struc-
ture, Vol. 4, Constants of Diatomic Molecules ͑Van Nostrand, New York,
1979͒.
23
͑a͒ R. A. Young and R. L. Sharpless, Discuss. Faraday Soc. 33, 228
͑1962͒; ͑b͒ R. A. Young and R. L. Sharpless, J. Chem. Phys. 39, 1071
͑1963͒.
24 I. M. Campbell and S. B. Neal, Faraday Discuss. Chem. Soc. 53, 72
͑1972͒.
ACKNOWLEDGMENTS
25 CRC Handbook of Chemistry and Physics, edited by R. C. Weast, M. J.
Astle, and W. H. Beyer, 68th ed. ͑CRC, Boca Raton, FL, 1988͒.
26 Gas-Phase Ion–Molecule Reaction Rate Constants through 1985, edited
by Y. Ikezoe, S. Matsuoka, M. Takebe, and A. Viggiano ͑Maruzen,
Tokyo, 1987͒, and references therein.
The authors are grateful to Professor Hiroshi Shimamori
at Fukui Institute of Technology and Dr. Shuji Kato at
Himeji Institute of Technology for their helpful discussion.
This work has been supported by the Morino Foundation for
molecular science ͑1992͒, the Iwatani Naoji Memorial Foun-
dation ͑1993͒, Showa Shell Sekiyu Foundation for environ-
mental research ͑1995͒, and a Grant-in-Aid for Scientific Re-
search No. 06453026 from the Japanese Ministry of
Education, Science, and Culture ͑1994–1996͒.
27 F. R. Gilmore, J. Quant. Spectrosc. Radiat. Transfer 5, 369 ͑1965͒.
28 A. J. Smith and F. H. Read, J. Phys. B 11, 3263 ͑1978͒.
29 H. Obase, M. Tsuji, and Y. Nishimura, J. Chem. Phys. 87, 2695 ͑1987͒.
30 R. D. Levine, Annu. Rev. Phys. Chem. 29, 59 ͑1978͒.
31 R. D. Levine and J. L. Kinsey, in Atom-Molecule Collision Theory, edited
by R. B. Bernstein ͑Plenum, New York, 1979͒.
32 E. Zamir and R. D. Levine, Chem. Phys. 52, 253 ͑1980͒.
33 S. Nakagawa, T. Shimokawa, and T. Sawai, Abstract of 69th Annu. Meet-
ing Jpn. Chem. Soc. ͑1995͒, 2F417, p. 500.
1 J. J. Thomson and E. Rutherford, Philos. Mag. 42, 392 ͑1896͒.
2 M. R. Flannery, in Advances in Atomic, Molecular, and Optical Physics,
edited by B. Bederson and A. Dargano ͑Academic, New York, 1994͒, Vol.
32, p. 117.
34 H. P. Fenzlaff and E. Illenberger, Int. J. Mass Spectrom. Ion Process 59,
185 ͑1984͒.
35 M. B. Yim and D. E. Wood, J. Am. Chem. Soc. 98, 2053 ͑1976͒.
36 M. C. R. Symons, R. C. Selby, I. G. Smith, and S. W. Bratt, Chem. Phys.
Lett. 48, 100 ͑1977͒.
3 B. H. Mahan and J. C. Person, J. Chem. Phys. 40, 2851 ͑1964͒.
4 W. H. Aberth, J. R. Peterson, R. E. Olson, and J. Moseley, Phys. Rev. 1,
158 ͑1970͒.
37 L. N. Shchegoleva, I. I. Bilkis, and P. V. Schastnev, Chem. Phys. 82, 343
͑1983͒.
5 D. R. Bates, in Case Studies in Atomic Physics ͑North Holland, Amster-
dam, 1974͒, Vol. 4, p. 57.
38 M. C. R. Symons, J. Chem. Soc. Faraday Trans. 1 77, 783 ͑1981͒.
39 M. Tsuji, M. Nakamura, and Y. Nishimura ͑unpublished͒.
40 K. S. Gant and L. G. Christophorou, J. Chem. Phys. 65, 2977 ͑1976͒.
41 W. T. Naff, R. N. Compton, and C. D. Compton, J. Chem. Phys. 54, 212
͑1971͒.
6 D. Smith and M. J. Church, Int. J. Mass Spectrom. Ion Phys. 19, 185
͑1976͒.
7 M. J. Church and D. Smith, J. Phys. D 11, 2199 ͑1978͒.
8 C. R. Herd, N. G. Adams, and D. Smith, Int. J. Mass Spectrom. Ion
Process. 87, 331 ͑1989͒.
J. Chem. Phys., Vol. 105, No. 7, 15 August 1996
129.22.89.130 On: Wed, 03 Dec 2014 17:20:55