Communication
ChemComm
Indocyanine Green (ICG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC). See Fig. S2 (ESI†) for chemical structures.
§ This result highlights an important technical advantage of pH sensor
production by nanoparticle self-assembly versus covalent synthesis of a
discrete molecular sensor. Fine-tuning the pKa of a molecular sensor
requires a much longer and more labour intensive cycle of structure
redesign and chemical synthesis.
20, 12628–12635. For a summary of absorption properties for
nanoparticles containing croconaine dyes, see: (c) M. S. Devadas,
T. Devkota, S. Guha, S. K. Shaw, B. D. Smith and G. V. Hartland,
Nanoscale, 2015, 7, 9779–9785S. Guha, S. K. Shaw, G. T. Spence,
F. M. Roland and B. D. Smith, Langmuir, 2015, 31, 7826–7834.
7 C. Encinas, E. Otazo, L. Rivera, S. Miltsov and J. Alonso, Tetrahedron
Lett., 2002, 43, 8391–8393.
¶ Inspection of Fig. 4c shows that the two major peaks within the in vivo
photoacoustic spectra are slightly red-shifted when compared to the
spectrum in buffer before injection. This is attributed to in vivo
attenuation of the lower photoacoustic excitation wavelengths by the
8 M. L. Immordino, F. Dosio and L. Cattel, Int. J. Nanomed., 2006, 1,
297–315.
9 J. J. Gassensmith, L. Barr, J. M. Baumes, A. Paek, A. Nguyen and
B. D. Smith, Org. Lett., 2008, 10, 3343–3346.
blood-perfused skin and tissue. This anatomical-dependent variation 10 (a) E. Ju, K. Dong, Z. Liu, F. Pu, J. Ren and X. Qu, Adv. Funct. Mater.,
may explain why the two in vivo photoacoustic spectra from nearby
peritoneal locations are slightly different. A goal for future imaging
studies is to develop calibration methods that correct these tissue-
dependent changes in the in vivo photoacoustic spectrum.
2015, 25, 1574–1580; (b) M. Guo, J. Huang, Y. Deng, H. Shen, Y. Ma,
M. Zhang, A. Zhu, Y. Li, H. Hui, Y. Wang, X. Yang, Z. Zhang and
H. Chen, Adv. Funct. Mater., 2015, 25, 59–67; (c) X. Wu, M. Yu, B. Lin,
H. Xing, J. Han and S. Han, Chem. Sci., 2015, 6, 798–803.
11 For examples of photoacoustic probes with chemically or biochemi-
cally activated response, see: (a) K. Pu, A. J. Shuhendler, J. V. Jokerst,
J. Mei, S. S. Gambhir, Z. Bao and J. Rao, Nat. Nanotechnol., 2014, 9,
233–239; (b) A. Ray, H. K. Yoon, Y. E. K. Lee, R. Kopelman and
X. Wang, Analyst, 2013, 138, 3126–3130; (c) K. Yang, L. Zhu, L. Nie,
X. Sun, L. Cheng, C. Wu, G. Niu, X. Chen and Z. Liu, Theranostics,
2014, 4, 134–141; (d) J. Levi, S. R. Kothapalli, T.-J. Ma, K. Hartman,
B. T. Khuri-Yakub and S. S. Gambhir, J. Am. Chem. Soc., 2010, 132,
11264–11269; (e) D. Razansky, N. J. Harlaar, J. L. Hillebrands,
A. Taruttis, E. Herzog, C. J. Zeebregts, G. M. van Dam and
V. Ntziachristos, Mol. Imaging Biol., 2012, 14, 277–285;
( f ) K. J. Cash, C. Li, J. Xia, L. V. Wang and H. A. Clark, ACS Nano,
2015, 9, 1692–1698; (g) G. Huang, Z. Si, S. Yang, C. Li and D. Xing,
J. Mater. Chem., 2012, 22, 22575–22581; (h) J. Zhang, Z. Qiao,
P. Yang, J. Pan, L. Wang and H. Wang, Chin. J. Chem., 2015, 33,
35–52.
12 N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos
and V. Ntziachristos, Biomaterials, 2015, 37, 415–424. For recent insight
into the photophysical factors that control photoacoustic signal inten-
sity using dyes, see: M. Frenette, M. Hatamimoslehabadi, S. Bellinger-
Buckley, S. Laoui, J. La, S. Bag, S. Mallidi, T. Hasan, B. Bouma,
C. Yelleswarapu and J. Rochford, J. Am. Chem. Soc., 2014, 136,
15853–15856.
13 (a) I. M. Hafez, S. Ansell and P. R. Cullis, Biophys. J., 2000, 79,
1438–1446; (b) G. Shi, W. Guo, S. M. Stephenson and R. J. Lee,
J. Controlled Release, 2002, 80, 309–319.
1 (a) S. Lal, S. E. Clare and N. J. Halas, Acc. Chem. Res., 2008, 41,
1842–1851; (b) V. Shanmugam, S. Selvakumar and C.-S. Yeh, Chem.
Soc. Rev., 2014, 43, 6254–6287; (c) L. Cheng, C. Wang, L. Feng,
K. Yang and Z. Liu, Chem. Rev., 2014, 114, 10869–10939.
2 (a) S. Zackrisson, S. M. W. Y. van de Ven and S. S. Gambhir, Cancer
Res., 2014, 74, 979–1004; (b) S. Mallidi, G. P. Luke and S. Emelianov,
Trends Biotechnol., 2011, 29, 213–221; (c) L. V. Wang and S. Hu,
Science, 2012, 335, 1458–1462.
3 (a) B. A. Webb, M. Chimenti, M. P. Jacobson and D. L. Barber,
Nat. Rev. Cancer, 2011, 11, 671–677; (b) A. I. Hashim, X. Zhang,
J. W. Wojtkowiakk and R. J. Gillies, NMR Biomed., 2011, 24, 582–591;
(c) O. A. Andreev, A. D. Dupuy, M. Segala, S. Sandugu, D. A. Serra,
C. O. Chichester, D. M. Engelman and Y. K. Reshetnyak, Proc. Natl.
Acad. Sci. U. S. A., 2007, 104, 7893–7898; (d) Y.-T. Tsai, J. Zhou,
H. Weng, J. Shen, L. Tang and W.-J. Hu, Adv. Healthcare Mater., 2014,
3, 221–229; (e) F. Okajima, Cell. Signalling, 2013, 25, 2263–2271;
( f ) A. Honasoge and H. Sontheimer, Front. Physiol., 2013, 4, 316;
´
(g) K. M. Jones, E. A. Randtke, C. M. Howison, J. Cardenas-
´
Rodrıguez, P. J. Sime, M. R. Kottmann and M. D. Pagel, Mol. Imaging
Biol., 2015, 17, 177–184.
4 (a) J. Nam, N. Won, H. Jin, H. Chung and S. Kim, J. Am. Chem. Soc.,
2009, 131, 13639–13645; (b) J. Nam, W.-G. La, S. Hwang, Y. S. Ha,
N. Park, N. Won, S. Jung, S. H. Bhang, Y.-J. Ma, Y.-M. Cho, M. Jin,
J. Han, J.-Y. Shin, E. K. Wang, S. G. Kim, S.-H. Cho, J. Yoo, B.-S. Kim
and S. Kim, ACS Nano, 2013, 7, 3388–3402; (c) A. Dragulescu-Andrasi,
S. Kothapalli, G. A. Tikhomirov, J. Rao and S. S. Gambhir, J. Am. Chem.
Soc., 2013, 135, 11015–11022; (d) H. Li, X. Liu, N. Huang, K. Ren, Q. Jin
and J. Ji, ACS Appl. Mater. Interfaces, 2014, 6, 18930–18937;
(e) J. F. Hainfeld, M. J. O’Connor, P. Lin, L. Qian, D. N. Slatkin and
H. M. Smilowitz, PLoS One, 2014, 9, e88414.
14 A. Beck, S. Bergner-Rabinowitz and I. Ofek, J. Bacteriol., 1969, 100,
1204–1207.
15 H. Johno, R. Ogata, S. Nakajima, N. Hiramatsu, T. Kobayashi,
H. Hara and M. Kitamura, Nephrol., Dial., Transplant., 2012, 27,
4053–4060.
5 W. Shi and H. Ma, Chem. Commun., 2012, 48, 8732–8744.
6 (a) G. T. Spence, G. V. Hartland and B. D. Smith, Chem. Sci., 2013, 4,
4240–4244; (b) G. T. Spence, S. S. Lo, C. Ke, H. Destecroix,
A. P. Davis, G. V. Hartland and B. D. Smith, Chem. – Eur. J., 2014,
´
16 (a) R. D. Corato, G. Bealle, J. Kolosnjaj-Tabi, A. Espinosa,
´
´
O. Clement, A. K. A. Silva, C. Menager and C. Wilhelm, ACS Nano,
2015, 9, 2904–2916; (b) M. S. Muthu, D. T. Leong, L. Mei and S.-S.
Feng, Theranostics, 2014, 4, 660–677.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015