Azoliu m -Lin k ed Cyclop h a n es: A Com p r eh en sive Exa m in a tion of
1
Con for m a tion s by H NMR Sp ectr oscop y a n d Str u ctu r a l Stu d ies†
Murray V. Baker,* Mark J . Bosnich, David H. Brown, Lindsay T. Byrne, Valerie J . Hesler,
Brian W. Skelton, Allan H. White, and Charlotte C. Williams
Chemistry M313, The University of Western Australia, Crawley, WA 6009, Australia
mvb@chem.uwa.edu.au
Received May 28, 2004
The synthesis and characterization of a series of azolium-linked cyclophanes are reported. The
cyclophanes consist of two azolium groups (17 examples) or three imidazolium groups (1 example)
linked to two benzenoid units (benzene, naphthalene, p-xylene, mesitylene, 1,2,3,4- and 1,2,4,5-
tetramethylbenzene, 2,6-pyridine, and p-tert-butylphenol) via methylene groups. Cyclophanes
containing ortho-, meta-, and para-substitution patterns in the benzenoid units were examined.
The conformations of the cyclophanes were examined in solution by variable-temperature NMR
studies and in the solid state by crystallographic studies. The p-cyclophanes and mesitylene-based
1
m- and o/m-cyclophanes are rigid on the NMR time scale, as indicated by sharp H NMR spectra
at all accessible temperatures. The non-mesitylene-based m-cyclophanes and the o-cyclophanes
are fluxional on the NMR time scale at high temperatures, but in most cases, specific conformations
can be “frozen out” at low temperatures. Many structures deduced from solution studies were
consistent with those in the solid state.
In tr od u ction
Cyclophanes have been of interest for many years.1-3
The literature includes an eclectic array of cyclophanes,
with examples containing various aromatic groups (e.g.,
benzene, pyridine, naphthalene, thiophene, pyrrole, imi-
dazole, and so forth) linked by a variety of structural
elements (e.g., aliphatic chains, chains containing het-
eroatoms, and aromatic and heteroaromatic groups). In
this paper, we confine ourselves to the class of azolium-
linked cyclophanes, structures in which two aromatic
units (benzene-, pyridine-, and naphthalene-based units
in our study) are linked by two or more azolium units
(Figure 1). In recent years, much interest has focused on
cationic azolium-linked cyclophane systems.4-21 This class
includes cyclophanes with two5,12 or three linking units:
F IGURE 1. Azolium-linked cyclophanes.
4,22 cyclophanes where the linking units are placed ortho,
meta, or para on the aromatic units;4,5,17 imidazolium,
benzimidazolium, and benzotriazolium linking units;12,18,19
† From the Ph.D. thesis of C. C. Williams.
(1) Vo¨gtle, F. Cyclophane Chemistry; Wiley: Chichester, U.K., 1993.
(2) Keehn, P. M.; Rosenfeld, S. M. Cyclophanes; Academic Press:
New York, 1983; Vol. 1.
(3) Keehn, P. M.; Rosenfeld, S. M. Cyclophanes; Academic Press:
New York, 1983; Vol. 2.
(12) Bitter, I.; To¨ro¨k, Z.; Csokai, V.; Gru¨n, A.; Bala´zs, B.; To´th, G.;
Keseru´, G. M.; Kova´ri, Z.; Czugler, M. Eur. J . Org. Chem. 2001, 2861-
2868.
(13) Cabildo, P.; Claramunt, R.; Sanz, D.; Elguero, J .; Enjalbal, C.;
Aubagnac, J .-L. Rapid Commun. Mass Spectrom. 1996, 10, 1071-1075.
(14) Cabildo, P.; Sanz, D.; Claramunt, R. M.; Bourne, S. A.; Alkorta,
I.; Elguero, J . Tetrahedron 1999, 55, 2327-2340.
(15) Magill, A. M.; McGuinness, D. S.; Cavell, K. J .; Britovsek, G.
J . P.; Gibson, V. C.; White, A. J . P.; Williams, D. J .; White, A. H.;
Skelton, B. W. J . Organomet. Chem. 2001, 617-618, 546-560.
(16) Yuan, Y.; Gao, G.; J iang, Z.-L.; You, J .-S.; Zhou, Z.-Y.; Yuan,
D.-Q.; Xie, R.-G. Tetrahedron 2002, 58, 8993-8999.
(17) Zhou, C.-H.; Xie, R.-G.; Zhao, H.-M. Org. Prep. Proced. Int. 1996,
28, 345-369.
(18) Rajakumar, P.; Murali, V. Tetrahedron 2000, 56, 7995-7999.
(19) Rajakumar, P.; Dhanasekaran, M. Tetrahedron 2002, 58, 1355-
1359.
(20) Ramos, S.; Alcalde, E.; Doddi, G.; Mencarelli, P.; Pe´rez-Garc´ıa,
L. J . Org. Chem. 2002, 67, 8463-8468.
(21) Shi, Z.; Thummel, R. P. J . Org. Chem. 1995, 60, 5935-5945.
(22) Yuan, Y.; Zhou, H.; J iang, Z.; Yan, J .; Xie, R. Acta Crystallogr.
2000, C56, e34-e35.
(4) Baker, M. V.; Bosnich, M. J .; Williams, C. C.; Skelton, B. W.;
White, A. H. Aust. J . Chem. 1999, 52, 823-825.
(5) Baker, M. V.; Skelton, B. W.; White, A. H.; Williams, C. C. J .
Chem. Soc., Dalton Trans. 2001, 111-120.
(6) Baker, M. V.; Skelton, B. W.; White, A. H.; Williams, C. C.
Organometallics 2002, 21, 2674-2678.
(7) Barnard, P. J .; Baker, M. V.; Berners-Price, S. J .; Skelton, B.
W.; White, A. H. Dalton Trans. 2004, 1038-1047.
(8) Simons, R. S.; Garrison, J . C.; Kofron, W. G.; Tessier, C. A.;
Youngs, W. J . Tetrahedron Lett. 2002, 43, 3423-3425.
(9) Garrison, J . C.; Simons, R. S.; Talley, J . M.; Wesdemiotis, C.;
Tessier, C. A.; Youngs, W. J . Organometallics 2001, 20, 1276-1278.
(10) Alcalde, E.; Ramos, S.; Pe´rez-Garc´ıa, L. Org. Lett. 1999, 1,
1035-1038.
(11) Alcalde, E.; Alvarez-Ru´a, C.; Garc´ıa-Rodriguez, S.; Mesquida,
N.; Pe´rez-Garc´ıa, L. J . Chem. Soc., Chem. Commun. 1999, 295-296.
10.1021/jo049097o CCC: $27.50 © 2004 American Chemical Society
Published on Web 10/02/2004
7640
J . Org. Chem. 2004, 69, 7640-7652