4
Tetrahedron
2. For reviews of the aldol reaction, see: (a) R. Mahrwald, Modern
1min), 1% DIEA in (3x 1min), DCM (3x 1min) and DMF (3x
1min). Fmoc protected (S)-amino acids were incorporated using
standard procedures and DIC/HOBt (1:1) in DMF (0.3M of Fmoc-
aminoacid) as coupling agents. The Fmoc group was removed by
treatment with 37 % piperidine and 0.07% Triton® X-100 in
DMF. After each deprotection, peptidyl resins were washed with
DMF (7 x 1min) and DCM (2 x 1 min). The ninhydrin test was
used to monitor amino acid couplings and deprotections along the
dipeptide synthesis. Finally, the reference peptides on Rink-
MBHA resin were cleaved by treatment with 5 mL of a mixture of
TFA/H2O (95:5 v/v) at 0ºC for 15 minutes and at room
temperature for 1.5 hours. TFA was removed by evaporation and
the crude peptide was precipitated with tert-butyl methyl
ether/cyclohexane mixture (1:1). The final peptidyl-resins
Aldol Reactions, Wiley-VCH: Weinheim, 2004, Vols. 1-2; (b)
Trost, B. M.; Brindle, C. S. Chem. Soc. Rev. 2010, 39, 1600-1632;
(c) Bisai, V.; Bisai, A.; Singh, V. K. Tetrahedron 2012, 68, 4541–
4580; (d) R. Mahrwald, Ed.,Modern Methods in Stereoselective
Aldol Reactions, Wiley-VCH: Weinheim, 2013.
3. For selected examples of derivatives of (S)-proline in asymmetric
organocatalysts see: (a) Sakthivel, K.; Notz, W.; Bui, T.; Barbas
III, C. F. J. Am. Chem. Soc. 2001, 123, 5260-5267; (b) Tang, Z.;
Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang,Y.-Z.;
Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262-5263; (c) Torii, H.;
Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem.
Int. Ed. 2004, 43, 1983-1986; (d) Córdova, A.; Sundén, H.;
Engqvist, M.; Ibrahem, I.; Casas, J. J. Am. Chem. Soc. 2004, 126,
8914-8915; (e) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.;
Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84-96; (f)
Marigo, M.; Franzén, J.; Poulsen, T. B.; Zhuang, W.; Jørgensen,
K. A. J. Am. Chem. Soc. 2005, 127, 6964-6965; (g) Hayashi, Y.;
Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44,
4212-4215; (h) Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe,
G. Nature 2006, 441, 861-863; (i) Palomo, C.; Landa, A.; Mielgo,
A.; Oiarbide, M.; Puente, Á.; Vera, S. Angew. Chem. Int. Ed.
2007, 46, 8431-8435; (j) Olivares-Romero, J. L.; Juaristi, E.
Tetrahedron 2008, 64, 9992-9998; (k) Almaşi, D.; Alonso, D. A.;
Nájera, C. Adv. Synth. Catal. 2008, 350, 2467-2472; (l) Gandhi,
S.; Singh, V. K. J. Org. Chem. 2008, 73, 9411-9416; (m) Liu, X.
H.; Lin, L. L.; Feng, X. M. Chem. Commun. 2009, 6145-6158; (n)
Chen, X. H.; Yu, J.; Gong, L. Z. Chem. Commun. 2010,6437-
6448; (o) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Meo, P.
L.; Noto, R. Eur. J. Org. Chem. 2010, 5696-5704; (p) Xu, J. W.;
Fu, X. K.; Wu, C. L.; Hu, X. Y. Tetrahedron: Asymmetry 2011,
22, 840-850; (q) Montroni,E.; Sanap, S. P.; Lombardo, M.;
Quintavalla, A.; Trombini, C.; Dhavale, D. D. Adv. Synth. Catal.
2011, 353, 3234-3240; (r) Fotaras, S.; Kokotos, C. G.; Tsandi, E.;
substitution
degree
obtained
by
the
Fmoc-group
spectrophotometric method using DBU wasin line with
anticipation.
8. General information. 1H and 13C NMR spectra were recorded on
a Jeol ECA-500 (500 MHz) spectrometer. Chemical shifts (δ) are
given in parts per million downfield from tetramethylsilane as an
internal reference. Coupling constants J are given in Hertz (Hz).
Molecular weights were determined by means of high-resolution
mass spectrometry on an Agilent LC/MSD-TOF model 1069A.
Infrared spectra (IR) are reported in reciprocal centimeters and
were recorded on a spectrophotometer Varian 640-IR FT-IR.
Enantiomeric ratios were measured byUV detector at 210 or 254
nm with Chiralpak AD-H column. Reactions carried out under
neat and solution conditions. The products were characterized by
HPLC-MS and ESI-TOF mass spectrometry on an HPLC Dionex
model Ultimate 3000. UV detection was performed at 220nm to
identify the dipeptides.
9. General procedure for the intermolecular aldol reaction
catalyzed by dipeptides 1a-d. A mixture of cyclohexanone2 (0.5
mL),p-nitrobenzaldehyde3 (0.20 mmol) and catalyst 1a-d (10
mol%) was milled for 6 or 24 hours at room temperature.
Following reaction, the resulting mixture was extracted with
EtOAc. The organic phase was dried over anh. Na2SO4 and
concentrated to give the crude product, that was purified by flash
chromatography (silicagel, hexane/EtOAc, 10:1 to 3:1) to afford
the aldol product asanti:syndiastereomeric mixture. Er values in
the major diastereomeric product were determined by HPLC on
Chiralpak AD-H column.
Kokotos, G. Eur. J. Org. Chem. 2011, 1310-1317;
(s)
Paradowska, J.; Pasternak, M.; Gut, B.; Gryzło, B.; Mlynarski, J.
J. Org. Chem. 2012, 77, 173-187; (t) Maycock, C. D.; Ventura, M.
R. Tetrahedron: Asymmetry 2012, 23, 1262-1271; (u) Pandey, A.
K.; Naduthambi, D.; Thomas, K. M.; Zondlo, N. J. J. Am. Chem.
Soc. 2013, 135, 4333-4363; (v) Nguyen, T.-H.; Toffano, M.;
Bournaud, C.; Vo-Thanh, G. Tetrahedron Lett. 2014, 55, 6377-
6380; (w) Vega-Peñaloza, A.; Sánchez-Antonio, O.; Ávila-Ortiz,
C. G.; Escudero-Casao, M.; Juaristi, E. Asian. J. Org. Chem.
2014, 3, 487-496; (x) Reyes-Rangel, G.; Vargas-Caporali, J.;
Juaristi, E. Tetrahedron 2015, submitted.
10. Avila-Ortiz, C. G.; López-Ortiz, M; Vega-Peñaloza, A.; Regla, I.;
Juaristi, E. Asymm. Catal. 2015, 2, 37-44, and references therein.
11. (a) Yolacan, C.; Mavis, M. E.; Aydogan, F. Tetrahedron 2014, 70,
3707-3713; (b) Tsandi, E.; Kokotos, C. G.; Kousidou, S.;
Ragoussis, V.; Kokotos, G. Tetrahedron 2009, 65, 1444–1449;
(c) Berkessel, A.; Koch, B.; Lex, J. Adv. Synth. Catal. 2004, 346,
1141 –1146.
4. (a) Hernández, J. G.; Juaristi, E. J. Org. Chem. 2011, 76, 1464-
1467; (b) Hernández, J. G.; Juaristi, E. Tetrahedron 2011, 67,
6953-6959; (c) Hernández, J. G.; García-López, V.; Juaristi, E.
Tetrahedron 2012, 68, 92-97; (d) Machuca, E.; Rojas, Y.; Juaristi,
E. Asian J. Org. Chem. 2015, 4, 46-53; (e) Machuca, E.; Juaristi,
E. Tetrahedron Lett. 2015, 56, 1144-1148.
5. (a) Rodríguez-Escrich, C.; Pericás, M. A. Eur. J. Org. Chem.
2015, 6, 1173–1188; (b) Zhi, C.; Wang, J.; Luo, B.; Li, X.; Cao,
X.; Pan, Y.; Gu, H. RSC Adv. 2014, 4, 15036–15039; (c) Osorio-
Planes, L.; Rodríguez-Escrich, C.; Pericás, M. A. Chem. Eur. J.
2014, 20, 2367 – 2372; (d) Szöllösi, G.; Csámpai, A.; Somlai, C.;
Fekete, M.; Bartók, M. J. Mol. Catal. A: Chemical 2014, 382, 86–
92; (e) Romney, D. K.; Colvin, S. M.; Miller S. J. J. Am. Chem.
Soc. 2014, 136, 14019−14022; (f) Pedrosa, R.; Andrés, J. M.;
Gamarra, A.; Manzano, R.; Pérez-López, C. Tetrahedron 2013,
69, 10811-10819; (g) Arakawa, Y.; Wennemers, H.
ChemSusChem 2013, 6, 242-245; (h) Ayats, C.; Henseler, A. H.;
Pericás, M. A. ChemSusChem 2012, 5, 320-325; (i) Arakawa, Y.;
Wiesner, M.; Wennemers, H. Adv. Synth. Catal. 2011, 353, 1201 –
1206; (j) Gruttadauria, M.; Giacalone, F.; Noto, R. Chem. Soc.
Rev. 2008, 37, 1666–1688; (k) Font, D.; Sayalero, S.; Bastero, A.;
Jimeno, C.; Pericás, M. A. Org. Lett. 2008, 10, 337-340; (l) Font,
D.; Jimeno, C.; Pericás, M. A. Org. Lett. 2006, 8, 4653-4655.
6. (a) Anastas, P.; Eghbali, N. Chem.Soc. Rev. 2010, 39, 301-312; (b)
Hernández, J. G.; Juaristi, E. Chem. Commun. 2012, 48, 5396-
5409.
7. The dipeptides were manually synthesized on MBHA resin (for 1a
0.43 mmoles, for 1b 0.29 mmoles, for 1c 0.27 mmoles, and for 1d
0.22 mmoles) with 0.63 mmol/gloading on T-bags reactors and
using Fmoc chemistry. In parallel, a second series was synthesized
on Rink-MBHA resin (0.74 mmol/g) using the same reaction
conditions. Syntheses were carried out only with (S)-amino acids
protected with N-α-fluorenylmetoxycarbonyl group (Fmoc). The
resins were solvated by successive washing steps with DCM (3 x