ACS Catalysis
Page 6 of 7
1
2
3
4
5
6
7
8
Rigoli, J. W.; Schomaker, J. M. Organometallics 2015, 34, 4164–
4173.
(8) For defluorocupration of β-fluoro-α,β-unsaturated esters, see:
Yamada, S.; Takahashi, T. Konno T.; Ishihara, T. Chem. Commun.
2007, 3679–3681.
(9) Bowmaker, G. A.; Boyd, S. E.; Hanna, J. V.; Hart, R. D.; Healy,
P. C.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 2002,
2722–2730.
AUTHOR INFORMATION
Corresponding Authors
*takashi.niwa@riken.jp, *takamitsu.hosoya@riken.jp
Notes
The authors declare no competing financial interest.
(10) Purity of CuCl(PCy3)2 was confirmed by measuring the melt-
ing point (175–177 °C) and a mixed melting point test with a newly
synthesized one.
9
ACKNOWLEDGMENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The authors thank Mr. Natsuhiko Sugimura, Dr. Masahiro
Uwamori, and Prof. Masahisa Nakada at Waseda University for
their kind support for the EPR analysis. This research was sup-
ported by JSPS KAKENHI Grant Number 15K05509 (T.N.), the
Project for Cancer Research And Therapeutic Evolution (P–
CREATE) from AMED (T.N.), and Special Postdoctoral Re-
searchers Program Fellowship from RIKEN (H.O.).
(11) Borylation of 1a under open-air conditions did not proceed at
all, suggesting the catalyst poisoning by the oxygen.
(12) For borylmetalation of arynes, see: (a) Yoshida, H.; Okada,
K.; Kawashima, S.; Tanino K.; Ohshita, J. Chem. Commun. 2010, 46,
1763–1765. (b) Yoshida, H.; Kawashima, S.; Takemoto Y.; Okada,
K.; Ohshita, J.; Takaki, K. Angew. Chem., Int. Ed. 2012, 51, 235–238.
(c) Nagashima, Y.; Takita, R.; Yoshida, K.; Hirano, K.; Uchiyama, M.
J. Am. Chem. Soc. 2013, 135, 18730–18733.
(13) We assume that decomposition of borylcopper species via pro-
tonation was avoided by the use of toluene-d8.
(14) In the reactions of p-bromofluorobenzene and p-
fluoroiodobenzene under these conditions, debromo- and de-
iodoborylation proceeded selectively (Scheme S1).
REFERENCES
(1) (a) Swallow, S. In Fluorine in Pharmaceutical and Medicinal
Chemistry: From Biophysical Aspects to Clinical Applications; Gou-
verneur, V.; Müller, K., Ed.; Imperial Collage Press: London, 2012;
pp 141–174. (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317,
1881–1886. (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V.
Chem. Soc. Rev. 2008, 37, 320–330. (d) Wang, J.; Sánchez-Roselló,
M.; Aceña, J. L.; der Pozo, C.; Sorochinsky, A. E.; Fustero, S.; So-
loshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432–2506. (e) Gillis,
E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J.
Med. Chem. 2015, 58, 8315–8359.
(2) For reviews, see: (a) Furuya, T.; Klein, J. E. M. N.; Ritter, T.
Synthesis 2010, 1804–1821. (b) Furuya, T.; Kamlet, A. S.; Ritter, T.
Nature 2011, 473, 470–477. (c) Liang, T.; Neumann, C.; Ritter, T.
Angew. Chem., Int. Ed. 2013, 52, 8214–8264. (d) Campbell, M. G.;
Ritter, T. Org. Process. Res. Dev. 2014, 18, 474–480. (e) Campbell,
M. G.; Ritter, T. Chem. Rev. 2015, 115, 612–633. (f) Neumann, C.;
Ritter, T. Angew. Chem., Int. Ed. 2015, 54, 3216–3221. (g) Cham-
pagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-
F. Chem. Rev. 2015, 115, 9073–9174. (h) Sather, A. C.; Buchwald, S.
L. Acc. Chem. Res. 2016, 49, 2146–2157. For recent examples, see:
(i) Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534, 369–
373. (j) Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R.
D.; Jansma, M. J.; Blamd, D. C.; Sanford, M. S. J. Am. Chem. Soc.
2017, 139, 1452–1455.
(3) (a) Jones, W. D. Dalton Trans. 2003, 3991–3995. (b) Amii, H.;
Uneyama, K. Chem. Rev. 2009, 109, 2119–2183. (c) Hughes, R. P.
Eur. J. Inorg. Chem. 2009, 4591–4606. (d) Ahrens, T.; Kohlmann, J.;
Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931–972. (e) Chen, W.;
Bakewell, C.; Crimmin, M. R. Synthesis 2017, 49, 810–821.
(4) Boronic Acids: Preparation and Applications in Organic Syn-
thesis, Medicine and Materials, 2nd ed.; Hall, D. G. Ed.; Wiley-VCH:
Weinheim, 2011.
(5) (a) Liu, X.-W.; Echavarren, J.; Zarate, C.; Martin, R. J. Am.
Chem. Soc. 2015, 137, 12470−12473. (b) Niwa, T.; Ochiai, H.;
Watanabe, Y.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14313–
14318. (c) Zhou, J.; Kuntze-Fechner, M. W.; Bertermann, R.; Paul, U.
S. D.; Berthel, J. H. J.; Friedrich, A.; Du, Z.; Marder, T. B.; Radius, U.
J. Am. Chem. Soc. 2016, 138, 5250−5253.
(15) Fernández, I.; Frenking, G.; Uggerud, E. J. Org. Chem. 2010,
75, 2971–2980.
(16) Electron-deficient arenes, such as 1,4-dinitrobenzene, have
been used as an anion radical scavenger via reversible electron trans-
fer. See: Rossi, R. A.; Pierini, A. B.; Peñéñory, A. B. Chem. Rev.
2003, 103, 71–167.
1
(17) H and 19F NMR spectra of 1,4-bis(trifluoromethyl)benzene
were unchanged when it was mixed with CuCl(PCy3)2, CsF, and
(Bpin)2 (2a) in toluene-d8, suggesting that inactivation of the catalyst
by π-coordination of the electron-deficient arene on the copper center
is unlikely.
(18) For a review of SRN1 reactions, see ref. 15 and: (a) Rossi, R. A.
Acc. Chem. Res. 1982, 15, 164–170. For recent examples, see: (b)
Shirakawa, E.; Hayashi, Y.; Itoh, K.; Watabe, R.; Uchiyama, N.;
Konagaya, W.; Masui, S.; Hayashi, T. Angew. Chem., Int. Ed. 2012,
51, 218–221. (c) Uchiyama, N.; Shirakawa, E.; Hayashi, T. Chem.
Commun. 2013, 49, 364–366. (d) Shirakawa, E.; Watabe, R.; Mura-
kami, T.; Hayashi, T. Chem. Commun. 2013, 49, 5219–5221. (e)
Haines, B. E.; Wiest, O. J. Org. Chem. 2014, 79, 2771–2774.
(19) For examples of C–F bond cleavage of monofluorobenzene
via SRN1 mechanism, see: (a) Rossi, R. A.; Bunnett, J. F. J. Am. Chem.
Soc. 1972, 94, 683–684. (b) Rossi, R. A.; Bunnett, J. F. J. Org. Chem.
1973, 38, 1407–1410. (c) Rossi, R. A.; Bunnett, J. F. J. Am. Chem.
Soc. 1974, 96, 112–117.
(20) One-electron transfer from an electron-rich copper(I) complex
to iodobenzene is proposed based on DFT analysis. See: Jones, G. O.;
Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132,
6205–6213.
(21) Hartwig, J. F. Organotransition Metal Chemistry: From
Bonding to Catalysis; University Science Books; Sausalito, CA, 2010;
pp 200–204.
(22) For the involvement of a B–F interaction assisting C–F bond
cleavage, see: Teltewskoi, M.; Panetier, J. A.; Macgregor, S. A.;
Braun, T. Angew. Chem., Int. Ed. 2010, 49, 3947–3951.
(23) Bartoli, G.; Todesco, P. E. Acc. Chem. Res. 1977, 10, 125–132.
(24) Although deiodoborylation of 4-fluoroiodobenzene proceeded
under the same conditions as those for the ipso-borylation of
fluoroarenes, the color change was not observed (Scheme S2), indi-
cating that the involvement of the SET process and the generation of a
copper(II) species were unlikely.
(25) A UV-visible absorption analysis of a mixture containing a
copper(I) complex, 2a, and CsF in cyclopentyl methyl ether (CPME),
which was measured after heating at 80 °C for 3 h, also gave a spec-
trum with the peak of λmax at 572 nm having the same intensity as that
(6) For photo-induced ipso-borylation of fluoroarenes bearing elec-
tron-donating groups, see: Mfuh, A. M.; Doyle, J. D.; Chhetri, B.;
Arman, H. D.; Larionov, O. V. J. Am. Chem. Soc. 2016, 138, 2985–
2988.
(7) (a) Zhu, W.; Ma, D. Org. Lett. 2006, 8, 261–263. (b) Kleeberg,
C.; Dang, L.; Lin, Z.; Marder, T. B. Angew. Chem., Int. Ed. 2009, 48,
5350–5354. (c) Hoveln, R. V.; Hudson, B. M.; Wedler, H. B.; Bates,
D. M.; Gros, G. L.; Tantillo, D. J.; Schomaker, J. M. J. Am. Chem.
Soc. 2015, 137, 5346–5354. (d) Ando, S.; Matsunaga, H.; Ishizuka, T.
J. Org. Chem. 2015, 80, 9671–9681. (e) Schmid, S. C.; Hoveln, R. V.;
ACS Paragon Plus Environment