4 K. K. Nanda, L. K. Thompson, J. N. Bridson and K. Nag, J. Chem.
Soc., Chem. Commun., 1994, 1337.
we can infer that τ is the principal factor affecting J which
suggests that in binuclear RO-bridging octahedral V()–oxo
compounds the most effective mechanism for magnetic inter-
actions is a direct interaction between dxy orbitals. Interestingly
the [HB(pz)3VO(OH)2]2 complex (HB(pz)3 = hydrotris(pyr-
azolyl)borate) shows two RO-bridges with an anti-orthogonal
configuration (τ = 180Њ) and therefore it should be strongly anti-
ferromagnetically coupled.25 However, it is clear that the
coupling in [HB(pz)3VO(OH)2]2 is anomalously low (i.e., Ϫ40
vs. ca. –150(20) cmϪ1) compared to that seen in the related com-
plexes.25 Therefore, based on the magnetic structural correlation
presented for the family of binuclear RO-bridging octahedral
V()–oxo complexes we could make a prediction about the
dihedral angle between the equatorial planes when it is not
possible to obtain crystals suitable for X-ray analysis. For
example [{VO(Hhebab)}2] (H3hebab = 1,1-bis(2-hydroxyethyl)-
4-(2-hydroxybenzyl)-1,4-diazabutane) shows a coupling con-
5 W. Plass, Angew. Chem., Int. Ed. Engl., 1996, 35, 627.
6 A. Rawas, H. Muirhead and J. Williams, Acta Crystallogr., Sect. D,
1996, 52, 631.
7 E. Sabbioni and E. Marafante, Bioinorg. Chem., 1978, 9, 389.
8 W. R. Harris and C. J. Carrano, J. Inorg. Biochem., 1984, 22, 201.
9 A. Neves, A. S. Ceccato, C. Erasmus-Buhr, S. Gehring, W. Haase,
H. Paulus, O. R. Nascimento and A. A. Batista, J. Chem. Soc.,
Chem. Commun., 1993, 23, 1782.
10 J. Salta, C. J. O’Connor, S. Li and J. Zubieta, Inorg. Chim. Acta,
1996, 250, 303.
11 L. Mers and W. Haase, J. Chem. Soc., Dalton Trans., 1980, 875.
12 C. J. O’Connor, Prog. Inorg. Chem., 1982, 29, 203.
13 Enraf-Nonius, CAD-4 Express Software, Version 5.0. Enraf-
Nonius, Delft, The Netherlands, 1992.
14 A. C. T. North, D. C. Phillips and F. S. Mathews, Acta Crystallogr.,
Sect. A, 1968, 24, 351.
15 G. M. Sheldrick, SHELXS97, Program for the Solution of Crystal
Structures, University of Göttingen, Germany, 1997.
16 G. M. Sheldrick, SHELXL97, Program for the Refinement of
Crystal Structures, University of Göttingen, Germany, 1997.
17 L. Zsolnai, ZORTEP, An Interactive ORTEP Program, University
of Heidelberg, Germany, 1996.
stant, J = Ϫ170 cmϪ1 25
, which corresponds to τ ≈ 180Њ, similar
to that found in complexes 1 and 4. This prevision is in agree-
ment with that based on spectroscopic data and functional
density calculations.26
18 P. E. Riley, V. L. Pecoraro, C. J. Carrano, J. A. Bonadies and K. N.
Raymond, Inorg. Chem., 1986, 25, 154.
19 N. D. Chasteen, Biological Magnetic Resonance, ed. L. Berliner and
J. Reuben, Plenum, New York, 1981, vol. 3, p. 53.
20 A. P. Ginsberg, Inorg. Chim. Acta Rev., 1971, 5, 45.
21 N. D. Chasteen, E. M. Lord, H. J. Thompson and J. K. Grady,
Biochim. Biophys. Acta, 1986, 884, 84.
22 M. Mikuriya and M. Fukuya, Bull. Chem. Soc. Jpn., 1996, 69,
679.
Acknowledgements
We acknowledge grants from CAPES-Projeto PROBRAL,
CNPQ (PIBIC), DLR (Germany). We thank Professor Dr
J. Strähle (Institut für Anorganische Chemie der Universität
Tübingen, Germany) for X-ray diffraction facilities.
23 A. Neves and K. Wieghardt, Inorg. Chim. Acta, 1988, 150, 183.
24 K. Wieghardt, U. Bossek, K. Volckmar, W. Swiridoff and J. Weiss,
Inorg. Chem., 1984, 23, 1387.
25 N. S. Dean, M. R. Bond, C. J. O’Connor and C. J. Carrano, Inorg.
Chem., 1996, 35, 7643.
References
1 V. H. Crawford, H. W. Richardson, J. R. Wasson, D. J. Hodgson and
W. E. Hatfield, Inorg. Chem., 1976, 15, 2107.
2 S. M. Gorun and S. J. Lippard, Inorg. Chem., 1991, 30, 1625.
3 A. Niemann, U. Bossek, K. Wieghardt and B. Nuber, Angew.
Chem., Int. Ed. Engl., 1992, 31, 311.
26 W. Plass, Z. Anorg. Allg. Chem., 1997, 623, 1290.
27 WINEPR SIMFONIA version 1.25, Bruker Analytische Mess-
technik GmbH, 1996.
J. Chem. Soc., Dalton Trans., 2000, 1573–1577
1577