1872
G.-C. Xu et al.
LETTER
1987. (s) Pasto, D. J.; Brophy, J. E. J. Org. Chem. 1991, 56,
4556. (t) Cairns, P. M.; Combie, L.; Pattenden, G.
Tetrahedron Lett. 1982, 23, 1405. (u) Combie, L.;
Maddocks, P. J.; Pattenden, G. Tetrahedron Lett. 1978, 19,
3483.
References
(1) (a) Poutsma, M. L.; Ibarbia, P. A. J. Am. Chem. Soc. 1971,
93, 440. (b) Smadja, W. Chem. Rev. 1983, 83, 263.
(c) Paulson, D. R.; Crandall, J. K.; Bunnell, C. A. J. Org.
Chem. 1970, 35, 3708. (d) Hendrick, M. E.; Hardie, J. A.;
Jones, M. Jr. J. Org. Chem. 1971, 36, 3061. (e) Patrick, T.
B.; Haynie, E. C.; Probst, W. J. J. Org. Chem. 1972, 37,
1553. (f) Aue, D. H.; Meshishnek, M. H. J. Am. Chem. Soc.
1977, 99, 223. (g) Sasaki, T.; Eguchi, S.; Ogawa, T. J. Am.
Chem. Soc. 1975, 97, 4413. (h) Sadler, I. H.; Stewart, J. A.
G. J. Chem. Soc., Perkin Trans. 2 1973, 278. (i) Sugita, H.;
Mizuno, K.; Saito, T.; Isagawa, K.; Otsuji, Y. Tetrahedron
Lett. 1992, 33, 2539. (j) Mizuno, K.; Sugita, H.; Kamada,
T.; Otsuji, Y. Chem. Lett. 1994, 449. (k) Akasaka, T.;
Misawa, Y.; Ando, W. Tetrahedron Lett. 1990, 31, 1173.
(l) Mizuno, K.; Sugita, H.; Isagawa, K.; Goto, M.; Otsuji, Y.
Tetrahedron Lett. 1993, 34, 5737. (m) Mizuno, K.; Nire, K.;
Sugita, H.; Otsuji, Y. Tetrahedron Lett. 1993, 34, 6563.
(n) Mizuno, K.; Sugita, H.; Hirai, T.; Maeda, H. Chem. Lett.
2000, 1144. (o) Mizuno, K.; Nire, K.; Sugita, H.; Maeda, H.
Tetrahedron Lett. 2001, 42, 2689. (p) Mizuno, K.; Maeda,
H.; Sugita, H.; Nishioka, S.; Hirai, T.; Sugimoto, A. Org.
Lett. 2001, 3, 581. (q) Mizuno, K.; Sugita, H.; Hirai, T.;
Maeda, H.; Otsuji, Y.; Yasuda, M.; Hashiguchi, M.; Shima,
K. Tetrahedron Lett. 2001, 42, 3363. (r) Maeda, H.; Zhen,
L.; Hirai, T.; Mizuno, K. ITE Lett. Batteries, New Technol.
Med. 2002, 3, 485. (s) Sydnes, L. K. Chem. Rev. 2003, 103,
1133.
(4) (a) Shi, M.; Xu, B. Org. Lett. 2002, 4, 2145. (b) Shi, M.;
Chen, Y.; Xu, B.; Tang, J. Tetrahedron Lett. 2002, 43, 8019.
On the other hand, Kilburn reported Lewis acid mediated
cascade reactions of silyl-substituted
methylenecyclopropane with ketones and aldehydes:
(c) Peron, G. L. N.; Kitteringham, J.; Kilburn, J. D.
Tetrahedron Lett. 2000, 41, 1615. (d) Peron, G. L. N.;
Norton, D.; Kitteringham, J.; Kilburn, J. D. Tetrahedron
Lett. 2001, 42, 347. (e) Patient, L.; Berry, M. B.; Kilburn, J.
D. Tetrahedron Lett. 2003, 44, 1015.
(5) (a) Xu, B.; Shi, M. Org. Lett. 2003, 5, 1415. (b) Shao, L.-
X.; Shi, M. Eur. J. Org. Chem. 2004, 426. (c) Shi, M.; Xu,
B.; Huang, J.-W. Org. Lett. 2004, 6, 1175.
(6) For isomerization of alkenylidenecyclopropanes catalyzed
by Lewis acids: Fitjer, L. Angew. Chem., Int. Ed. Engl. 1975,
14, 360.
(7) The 1H and 13C NMR spectral data and analytic data of the
compounds shown in Tables 1 and 2 and Scheme 2, and
detailed experimental procedures for their preparation, are
available upon request from the author.
(8) The high-level ab initio calculations predict the heats of
formation of these 1-cyclopropylvinyl cations A-1, A-2, and
A-3 to be 238.6, 242.5, and 256 kcal mol–1, respectively;
thus, initial protonation might take place to give the most
thermodynamically stable cationic intermediate A-1
(Figure 1): (a) Siehl, H.-U.; Aue, D. H. Dicoordinated
(2) For the synthesis of vinylidenecyclopropanes, see:
(a) Isagawa, K.; Mizuno, K.; Sugita, H.; Otsuji, Y. J. Chem.
Soc., Perkin Trans. 1 1991, 2283; and references cited
therein. (b) Sasaki, T.; Eguchi, S.; Ohno, M.; Nakata, F. J.
Org. Chem. 1976, 41, 2408. (c) Sasaki, T.; Eguchi, S.;
Ogawa, T. J. Org. Chem. 1974, 39, 1927. (d) Sasaki, T.;
Eguchi, S.; Ogawa, T. Heterocycles 1975, 3, 193.
+
+
+
A–1
A–2
A–3
Figure 1
(e) Eguchi, S.; Arasaki, M. J. Chem. Soc., Perkin Trans. 1
1988, 1047. (f) Sugita, H.; Mizuno, K.; Mori, T.; Isagawa,
K.; Otsuji, Y. Angew. Chem., Int. Ed. Engl. 1991, 30, 984.
(g) Patrick, T. B. Tetrahedron Lett. 1974, 15, 1407. (h) Al-
Dulayymi, J. R.; Baird, M. S. J. Chem. Soc., Perkin Trans. 1
1994, 1547. (i) Patrick, T. B. J. Org. Chem. 1977, 42, 3354.
(j) Hartzler, H. D. J. Am. Chem. Soc. 1971, 93, 4527.
(3) For the reactions of vinylidenecyclopropanes with carbenes
and carbene complexes, see: (a) Crandall, J. K.; Paulson, D.
R.; Bunnell, C. A. Tetrahedron Lett. 1969, 4217. (b) Hwu,
C.-C.; Wang, F.-C.; Yeh, M.-C. P. J. Organomet. Chem.
1994, 474, 123. (c) Billups, W. E.; Haley, M. M.; Boese, R.;
Blaser, D. Tetrahedron 1994, 50, 10693. (d) Maeda, H.;
Hirai, T.; Sugimoto, A.; Mizuno, K. J. Org. Chem. 2003, 68,
7700. (e) Bloch, R.; Perchec, P. L.; Conia, J.-M. Angew.
Chem., Int. Ed. Engl. 1970, 9, 798. (f) Pasto, D. J.; Yang, S.
H. J. Org. Chem. 1986, 51, 1676. (g) Pasto, D. J.; Miles, M.
F. J. Org. Chem. 1976, 41, 2608. (h) Pasto, D. J.; Chen, A.
F.-T.; Binsch, G. J. Am. Chem. Soc. 1973, 95, 1553.
(i) Pasto, D. J.; Chen, A. F.-T. J. Am. Chem. Soc. 1971, 93,
2562. (j) Pasto, D. J.; B orchardt, J. K.; Fehlner, T. P.;
Baney, H. F.; Schwartz, M. E. J. Am. Chem. Soc. 1976, 98,
526. (k) Pasto, D. J.; Fehlner, T. P.; Schwartz, M. E.; Baney,
H. F. J. Am. Chem. Soc. 1976, 98, 530. (l) Pasto, D. J.;
Miles, M. F. J. Org. Chem. 1976, 41, 425. (m) Pasto, D. J.;
Chen, A. F.-T.; Cuirdaru, G.; Paquette, L. A. J. Org. Chem.
1973, 38, 1015. (n) Gompper, R.; Lach, D. Tetrahedron
Lett. 1973, 14, 2683. (o) Gompper, R.; Lach, D.
Carbocations; Rappoport, Z.; Stang, P. J., Eds.; John Wiley
& Sons: New York, 1997, 137–138. (b) The stabilizing
effect of cyclopropyl substituents on carbocations is well
documented: Olah, G. A.; Reddy, V. P.; Prakash, G. K. S.
Chem. Rev. 1992, 92, 69.
(9) For the mechanism of the 1,3-proton shift, please see: Carey,
F. A.; Sundburg, R. J. Advanced Organic Chemistry, 3rd
Ed.; Plenum Press: New York, 1990, 609.
(10) Typical reaction procedure for the rearrangement of
diarylvinylidenecyclopropanes: To a solution of
diarylvinylidenecyclopropane 1d (64 mg, 0.2 mmol) in DCE
(2.0 mL) was added Sn(OTf)2 (8 mg, 0.02 mmol), the
reaction mixture was stirred for 10 h at 80 °C (monitored by
TLC). After the starting materials (diarylvinylidenecyclo-
propans 1) were consumed, the solvent was removed under
reduced pressure and the residue was subjected to flash
column chromatography to give the desired product 2d (58
mg, 91%) as a colorless liquid. 2-Methyl-1-phenyl-4-(para-
methylphenyl)-7-methylnaphthalene (2d): colorless oil; IR
(CH2Cl2): 3053, 3023, 2954, 2923, 2855, 1620, 1600, 1516,
1507, 1440, 1381, 1362, 1029, 883, 824, 760, 703, 526
cm–1; 1H NMR (300 MHz, CDCl3): d = 2.22 (3 H, s, CH3),
2.34 (3 H, s, CH3), 2.45 (3 H, s, CH3), 7.15–7.22 (2 H, m,
Ar), 7.28–7.31 (5 H, m, Ar), 7.40–7.53 (5 H, m, Ar), 7.82
(1 H, d, J = 8.7 Hz, Ar); 13C NMR (75 MHz, CDCl3): d =
20.9, 21.3, 21.8, 125.4, 125.8, 126.9, 126.9, 128.4, 128.4,
128.8, 128.9, 130.0, 130.2, 132.7, 133.4, 135.2, 136.8,
137.0, 138.0, 139.2, 140.0; MS (EI): m/z (%) = 322 (100)
[M+], 307 (10.3), 292 (7.6), 229 (3.8), 215 (5.1), 91 (1.7);
HRMS (MALDI): m/z calcd for C25H23 (M+ + 1), 323.1794;
found, 323.1786.
Tetrahedron Lett. 1973, 14, 2687. (p) Pasto, D. J.;
Wampfler, D. Tetrahedron Lett. 1974, 1933. (q) Sasaki, T.;
Eguchi, S.; Ohno, M. J. Am. Chem. Soc. 1975, 97, 4413.
(r) Pasto, D. J.; Whitmer, J. L. J. Org. Chem. 1980, 45,
Synlett 2005, No. 12, 1869–1872 © Thieme Stuttgart · New York