4
Tetrahedron Letters
10. Lipshutz, B. H. Chem. Rev. 1986, 86, 795.
References
11. Kirkiacharian, S.; Thuy, D. T.; Sicsic, S.; Bakhchinian, R.;
Kurkjian, R.; Tonnaire, T. Farmaco 2002, 57, 703.
12. (a) Sayed, H. H.; Shamroukh, A. H.; Rashad, A. E. Acta
Pharm. 2006, 56, 231. (b) Sardari, S.; Mori, Y.; Horita, K.;
Micetich, R. G.; Nishibe, S.; Daneshtalab, M. Bioorg. Med.
Chem. 1999, 7, 1933.
13. (a) Fan, G. J.; Mar, W.; Park, M. K.; Wook, Choi. E.;
Kim,K.; Kim, S. Bioorg. Med. Chem. Lett. 2001, 11, 2361.
(b) Cravotto, G.; Nano, G. M.; Palmisano, G.; Tagliapietra,
S. Tetrahedron: Asymmetry 2001, 12, 707.
14. Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural
Coumarins: Occurrence, Chemistry and Biochemistry; John
Wiley & Sons Ltd: New York, 1982, 21.
1. (a) Thiel, F. Angew. Chem. Int. Ed. 1999, 38, 2345. (b)
Nicolaou, K. C.; Boddy, C. N. C. J. Am. Chem. Soc. 2002,
124, 10451. (c) Sperotto, E.; van Klink, G. P. M.; de Vries, J.
G.; van Koten, G. Tetrahedron, 2010, 66, 9009. (d) Liu, J.
B.; Yan, H.; Lu, G. Tetrahedron Letters 2013, 54, 891. (e)
Zhou, H. P.; Liu, J. B.; Yuan, J. J.; Peng, Y. Y. RSC
Advances 2014, 4, 25576. (f) Liu, J. B.; Chen, F. J.; Liu, N.;
Hu, J. RSC Advances 2015, 5, 45843.
2. (a) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002,
219, 131. (b) Czarnik, W. Acc. Chem. Res. 1996, 29, 112. (c)
Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108,
3054.
15. Gao, W.; Luo, Y.; Ding, Q.; Peng, Y.; Wu, J. Tetrhedron lett.
2010, 51, 136.
16. Peng, Y.; Wen, Y.; Mao, X.; Qiu, G. Tetrahedron Lett. 2009,
50, 2405.
3. (a) Sreedhar, B.; Arundhathi, R.; Reddy, P. L.; Kantam, M.
L. J. Org. Chem. 2009, 74, 7951. (b) Fernandez Rodriguez,
M. A.; Shen Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128,
2180. (c) Fernandez Rodriguez, M. A.; Shen Q.; Hartwig, J.
F. Chem.-Eur. J. 2006, 12, 7782. (d) Shen, G.; Lv, X.; Qian,
W.; Bao, W. Tetrahedron Lett. 2008, 49, 4556. (e) Agawane,
S. M.; Nagarkar, J. M. Tetrahedron Lett. 2011, 52, 5220.
4. (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1904, 37, 853. (b)
Paul, S.; Gupta, M. Tetrahedron Lett. 2004, 45, 8825. (c)
Corbert, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651.
5. (a) Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem.
Int. Ed. Engl. 1990, 29, 977. (b) Ainsbury, M. Tetrahedron,
1980, 36, 3327. (c) Lindley, J. Tetrahedron, 1984, 40, 1433.
6. (a) Fanta, P. E.; Chem. Rev. 1946, 38, 139. (b) Goshaev, M.;
Otroshchenko, O. S.; Sadykov, A. S.; Russ. Chem. Rev.
1972, 41, 1046. (c) Takise, R.; Isshiki, R.; Muto, K.; Itami,
K.; Yamaguchi, J. J. Am. Chem. Soc. 2017, 139, 3340. (d)
Ma, D.; Bhunia, S.; Pawar, G. G.; VijayKumar, S.; Jiang, Y.
Angew. Chem. Int. Ed. 10.1002/anie.201701690.
7. (a) Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E.
Tetrahedron Lett. 2000, 41, 1283. (b) Kwong, F. Y.;
Buchwald, S. L. Org. Lett. 2002, 4, 3517. (c) Zhu, D.; Xu,
L.; Wu; F.; Wan, B. Tetrahedron Lett. 2006, 47, 5781. (d)
Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609. (e)
Verma, A. K.; Singh, J.; Chaudhary, R. Tetrahedron Lett.
2007, 48, 7199. (f) Carril, M.; SanMartin, R.; Dominguez,
E.; Tellitu, I. Chem.-Eur. J. 2007, 13, 5100. (g) Lv, X. J.;
Bao, W. J. Org. Chem. 2007, 72, 3863. (h) Zhang, H.; Cao,
W.; Ma, D. Synth. Commun. 2007, 37, 25.
17. Reviews: (a) Moriarty, R. M.; Vaid, R. K. Synthesis 1990, 6,
431; (b) Stang, P. J. Angew. Chem. Int. Ed. Engl. 1992, 31,
274. (c) Prakash, O.; Saini, N.; Sharma, P. K. Synlett 1994, 4,
221. (d) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96,
1123. (f) Umemoto, T. Chem. Rev. 1996, 96, 1757. (g) Kita,
Y.; Takada, T.; Tohma, H. Pure Appl. Chem. 1996, 68, 627.
(i) Varvoglis, A. Tetrahedron 1997, 53, 1179. (j) Zhdankin,
V. V. Rev. Heteroatom Chem. 1997, 17, 133. (k) Muraki, T.;
Togo, H.; Yokoyama, M. Rev. Heteroatom Chem. 1997, 17,
213. (l) Kitamura, T.; Fujiwara, Y. Org. Prep. Proced. Int.
1997, 29, 409. (m) Varvoglis, A.; Spyroudis, S. Synlett 1998,
3, 221. (n) Zhdankin, V. V.; Stang, P. J. Tetrahedron 1998,
54, 10927. (o) Moriarty, R. M.; Prakash, O. Adv. Heterocycl.
Chem. 1998, 69, 1. (p) Togo, H.; Katohgi, M. Synlett 2001,
565. (q) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102,
2523. (r) Richardson, R. D.; Wirth, T. Angew. Chem. Int. Ed.
2006, 45, 4402. (s) Ladziata, U.; Zhdankin, V. Synlett 2007,
4, 527. (t) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008,
108, 5299. (u) Merritt, E. A.; Olofsson, B. Synthesis 2011, 4,
517.
18. (a)Hossain, M. D.; Kitamura, T. J. Org. Chem. 2005, 70,
6984. (b) Arunima M.; Gargi, P.; Raghunath, S.; Tabassum,
H.; Achintya, S.; Asish, R. D. Synthetic Communications
2013, 43, 169. (c) Alizadeh, A.; Ghanbaripour, R. SYNLETT
2014, 25, 2777.
19. (a) Qu, X.; Sun, P.; Li, T.; Mao, J. Adv. Synth. Catal. 2011,
353, 1061. (b) Laschober, R.; Kappe, T. Synthesis 1990, 5,
387. (c) Mackey, K.; Pardo, L. M.; Prendergast, A. M.;
Nolan, M.-T.; Bateman, L. M.; McGlacken, G. P. Org. Lett.
2016, 18, 2540.
8. For selected examples, see: (a) Gellert, M.; O’Dea, M. H.;
Itoh, T.; Tomizawa, J. I. Proc. Natl. Acad. Sci. U.S.A. 1976,
73, 4474, 4478. (b) Murray, R. D. H.; Méndez, J.; Brown, S.
A. The Natural Coumarins: Occurrence, Chemistry, and
Biochemistry; Wiley: New York, 1982. (c) Ali, J. A.;
Jackson, A. P.; Howells, A. J.; Maxwell, A. Biochemistry
1993, 32, 2717. (d) Pereira, N. A.; Pereira, B. M. R.; Celia do
Nascimento, M.; Parente, J. P.; Mors, W. B. Planta Med.
1994, 60, 99. (e) Vlietinck, A. J.; De Bruyne, T.; Apers, S.;
Pieters, L. A. Planta Med. 1998, 64, 97. (f) Murakami, A.;
Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.;
Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med.
Chem. Lett. 2000, 10, 59. (g) Xia, Y.; Yang, Z.-Y.; Xia, P.;
Hackl, T.; Hamel, E.; Mauger, A.; Wu, J.-H.; Lee, K.-H. J.
Med. Chem. 2001, 44, 3932. (h) Chen, Y.-L.; Fang, K.-C.;
Sheu, J.-Y.; Hsu, S.-L.; Tzeng, C.-C. J. Med. Chem. 2001,
44, 2374. (i) Yamaguchi, T.; Fukuda, T.; Ishibashi, F.; Iwao,
M. Tetrahedron Lett. 2006, 47, 3755 and references cited
therein.
20. General procedure for Cu-catalyzed reactions of 4-
hydroxycoumarin with hypervalentiodine reagents: 4-
hydroxycoumarins 1 (0.3 mmol), hypervalent iodine reagents
2 (0.36 mmol) in DMF (3.0 mL), and Cu (50 mol %) was
added at 80 ℃. After completion of the reaction as indicated
by TLC, the reaction mixture was cooled to room
temperature and water (20 mL) was added. The mixture was
extracted with CH2Cl2 (3 × 10 mL) and dried over anhydrous
Na2SO4. The solution was filtered, concentrated, and the
residue was purified by column chromatography to afford the
product 3. Data of selected example: 4-(p-tolyloxy)coumarin
(3a)18b, Yield: 91%; 1H NMR (400 MHz, CDCl3) δ 8.03 (dd,
J = 8.0, 1.2 Hz, 1H), 7.64-7.58 (m, 1H), 7.38-7.32 (m, 2H),
7.29-7.25 (m, 2H), 7.08-7.02 (m, 2H), 5.42 (s, 1H), 2.40 (s,
3H). 13C NMR (100 MHz, CDCl3) δ 166.5, 162.6, 153.6,
150.1, 136.6, 132.7, 130.8, 124.0, 123.0, 120.9, 116.8, 115.5,
93.3, 20.9. (For details, please see Supporting Information)
9. (a) Kirilmis, C.; Ahmedzade, M.; Servi, S.; Koca, M.;
Kizirgil, A.; Kazaz, C. Eur. J. Med. Chem. 2008, 43, 300. (b)
Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002,
45, 2670. (c) Aslam, S. N.; Stevenson, P. C.; Phythian, S. J.;
Veitch, N. C.; Hall, D. R. Tetrahedron 2006, 62, 4214.