ChemSusChem
10.1002/cssc.201601364
COMMUNICATION
f) I. Matanovic, S. Babanova, A. Perry, A. Serov, K. Artyushkova, P.
Atanassov, Phys. Chem. Chem. Phys. 2015, 17, 13235–13244; g) W.
Liu, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T.
Zhang, Chem. Sci. 2016, 7, 5758-5764; h) L. Zhang, A. Wang, W.
Wang, Y. Huang, X. Liu, S. Miao, J. Liu, T. Zhang, ACS Catal. 2015, 5,
6563–6572.
Acknowledgements
This work is supported by the US NSF under grant numbers
EEC-0813570 (Center for Biorenewable Chemicals,CBiRC) and
CBET-1157829, and in part by the US DOE-EERE Fuel Cell
Technology Program (subcontract to Northeastern University,
with PI Sanjeev Mukerjee). A portion of the microscopy research
was conducted at the Center for Nanophase Materials Sciences
in Oak Ridge National Lab, which is a DOE Office of Science
User Facility.
[6]
M. Shao, Q. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116,
3594–365.
[7]
8]
M. R. Farsani, B. Yadollahi, J. Mol. Catal. A Chem. 2014, 392, 8–15.
a) F. Shi, M. K. Tse, M. M. Pohl, A. Brückner, S. Zhang, M. Beller,
Angew. Chemie. Int. Ed. 2007, 46, 8866–8868; b) Y. Gao, D. Ma, G. Hu,
P. Zhai, X. Bao, B. Zhu, B. Zhang, D. S. Su, Angew. Chem. Int. Ed.
[
2011, 50, 10236–10240; c) L. Geng, X. Zhang, W. Zhang, M. Jia, G. Liu,
Keywords: Heterogeneous catalyst • Oxidation • Reaction
Chem. Commun., 2014, 50, 2965–2967; d) L. Geng, X. Zhang, W.
Zhang, M. Jia, W. Yan, G. Liu, Catal. Sci. Technol., 2015, 5, 3097-3102.
a) A. Modak, J. Mondal, A. Bhaumik, Appl. Catal. A Gen. 2013, 459,
mechanism • N-doped carbon • Non-precious metal
[9]
4
1–51; b) A. Fidalgo-Marijuan, G. Barandika, B. Bazán, M. K. Urtiaga,
E. S. Larrea, M. Iglesias, L. Lezama, M. I. Arriortua, Dalt. Trans. 2015,
4, 213–222; c) G. Bilis, K. C. Christoforidis, Y. Deligiannakis, M.
[
1]
2]
T. Muroi, in Noble Met. (Ed.: Y. Su), InTech, 2012, pp. 301–334.
a) T. Mallat, A. Baiker, Chem. Rev. 2004, 104(6), 3037-3058; b) S. E.
Davis, M. S. Ide, R. J. Davis, Green Chem. 2013, 15, 17–45; c) T.
Matsumoto, M. Ueno, N. Wang, S. Kobayashi, Chem. Asian. J. 2008, 3,
[
4
Louloudi, Catal. Today 2010, 157, 101–106; d) R. Rahimi, S. Z.
Ghoreishi, M. G. Dekamin, Monatsh. Chem. 2012, 143, 1031–1038; e)
A. R. Oveisi, K. Zhang, A. Khorramabadi-zad, O. K. Farha, J. T. Hupp,
Sci. Rep. 2015, 5, 10621.
196-214; d) J. Nie, J. Xie, H. Liu, J. Catal. 2013, 301, 83–91;
[
3]
4]
P. C. K. Vesborg, T. F. Jaramillo, RSC Adv. 2012, 2, 7933–7947.
a) H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Müllen, J. Am. Chem.
Soc. 2013, 135, 16002–16005; b) J. Masa, W. Xia, M. Muhler, W.
Schuhmann, Angew. Chemie Int. Ed. 2015, 54, 10102–10120;
Angew.Chem. 2015, 127, 10240–10259; c) X. Cui, J. Xiao, Y. Wu, P.
Du, R. Si, H. Yang, H. Tian, J. Li, W. H. Zhang, D. Deng, X. Bao.,
Angew. Chemie. Int. Ed. 2016, 55, 6708–6712; Angew.Chem. 2016,
[
[
10] R. V Jaga deesh, H. Junge, M. Beller, Nat. Commun. 2014, 5, 4123.
11] Y. Zhu, B. Zhang, X. Liu, D. W. Wang, D. S. Su, Angew. Chemie - Int.
Ed. 2014, 53, 10673–10677.
[
[
12] A. Serov, K. Artyushkova, E. Niangar, C. Wang, N. Dale, F. Jaouen, M.-
T. Sougrati, Q. Jia, S. Mukerjee, P. Atanassov, Nano Energy 2015, 16,
293–300.
128, 6820–6824; d) X. Zheng, J. Deng, N. Wang, D. Deng, W. H.
[
13] a) K. Artyushkova, A. Serov, S. Rojas-Carbonell, P. Atanassov, J. Phys.
Chem. C 2015, 119, 25917–25928; b) U. Martinez, J. H. Dumont, E. F.
Holby, K. Artyushkova, G. M. Purdy, A. Singh, N. H. Mack, P.
Atanassov, D. A. Cullen, K. L. More, et al., Sci. Adv. 2016, 2, e1501178;
c) V. V. Strelko, N. T. Kartel, I. N. Dukhno, V. S. Kuts, R. B. Clarkson, B.
M. Odintsov, Surf. Sci. 2004, 548, 281–290.
Zhang, X. Bao, C. Li, Angew. Chemie. Int. Ed. 2014, 53, 7023–7027; e)
P. D. Tran, A. Morozan, S. Archambault, J. Heidkamp, P. Chenevier, H.
Dau, M. Fontecave, A. Martinent, B. Jousselme, V. Artero, Chem. Sci.
2015, 6, 2050–2053; f) G. Wu, K. L. More, C. M. Johnston, P. Zelenay,
Science 2011, 332, 443–447; g) M. Lefèvre, E. Proietti, F. Jaouen, J.P.
Dodelet, Science 2009, 324, 71–74.
[
14] M. S. Ide, R. J. Davis, J. Catal. 2013, 308, 50–59.
[
5]
a) D. Deng, X. Chen, L. Yu, X. Wu, Q. Liu, Y. Liu, H. Yang, H. Tian, Y.
Hu, P. Du, R. Si, J. Wang, X. Cui, H. Li, J. Xiao, T. Xu, J. Deng, F.
Yang, P. N. Dushesne, P. Zhang, J. Zhou, L. Sun, J. Li, X. Pan, X. Bao.,
Sci. Adv. 2015, 1, e1500462; b) R. V. Jagadeesh, A.-E. Surkus, H.
Junge, M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schunemann, A.
[
15] M. Q. Yang, Y. Zhang, N. Zhang, Z. R. Tang, Y. J. Xu, Sci. Rep. 2013,
3
, 3314.
[
16] M. S. Ide, D. D. Falcone, R. J. Davis, J. Catal. 2014, 311, 295–305.
17] a) J. M. Hoover, B. L. Ryland, S. S. Stahl, J. Am. Chem. Soc. 2013, 135,
[
2
357–2367; b) Q. Cao, L. M. Dornan, L. Rogan, N. L. Hughes, M. J.
Bruckner, M. Beller, Science. 2013, 342, 1073–1076; c) R.
V
Muldoon, Chem. Commun. 2014, 50, 4524–4543; c) A. Badalyan, S. S.
Stahl, Nature. 2016, 535, 406-410; d) C. Parmeggiani, F. Cardona,
Green Chem. 2012, 14, 547-564.
Jagadeesh, T. Stemmler, A. Surkus, H. Junge, K. Junge, M. Beller, Nat.
Protoc. 2015, 10, 548–557; d) R. V Jagadeesh, H. Junge, M. Pohl, J.
Radnik, A. Brückner, M. Beller, J. Am. Chem. Soc. 2013, 135, 10776–
[
18] A. Serov, M. H. Robson, M. Smolnik, P. Atanassov, Electrochim. Acta
10782; e) X. Cui, Y. Li, S. Bachmann, M. Scalone, A. E. Surkus, K.
2012, 80, 213–218.
Junge, C. Topf, M. Beller, J. Am. Chem. Soc. 2015, 137, 10652–10658;
This article is protected by copyright. All rights reserved.