2
4
M. Trytek et al. / Journal of Photochemistry and Photobiology A: Chemistry 223 (2011) 14–24
tageous with respect to easier recovery and recycling of these
biocatalysts. In the case of chlorophyll b, binding of the –CHO group
should be carried out, for example by employing it in the immobi-
lization process. Further improvement of the catalytic activity of
chlorophylls may be achieved by increasing the photostability by
chemical modification of these catalysts with synthetic polymers
such as polyethylene glycol derivatives or others.
[23] L. Weber, R. Hommel, J. Behling, G. Haufe, H. Hennig, Photocatalytic oxy-
genation of hydrocarbons with (tetraarylporphyrinato)iron(III) complexes
and molecular oxygen. Comparison with microsomal cytochrome P-450
mediated oxygenation reactions, J. Am. Chem. Soc. 116 (1994) 2400–
2408.
[
24] U. Neuenschwander, F. Guignard, I. Hermans, Mechanism of the aerobic oxida-
tion of alfa-pinene, Chem. Sust. Chem. 3 (2010) 75–84.
[
25] W. Schrader, J. Geiger, D. Klockow, E.H. Korte, Degradation of alpha-pinene on
Tenax during sample storage: effects of daylight radiation and temperature,
Environ. Sci. Technol. 35 (2001) 2717–2720.
[
26] K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution, VCH
Publishers, Inc., 1991, pp. 62–66.
References
[
27] J.D. Spikes, J.C. Bommer, Chlorophyll and related pigments as photosensitizers
in biology and medicine, in: H. Scheer (Ed.), Chlorophylls, CRC Press, London,
1991, pp. 1181–1204.
[
[
1] C.C. DeCarvalho, M.M. De Fonseca, Biotransformation of terpenes, Biotechnol.
Adv. 24 (2006) 134–142.
2] O.P. Shukla, P.K. Bhattacharyya, Microbiological transformations of terpenes:
Part – XI pathways of degradation of ␣- & -pinenes in a soil pseudomonad
[28] T. Itoh, A. Ishii, Y. Kodera, M. Hiroto, A. Matsushima, H. Nishimura, Y. Inada,
Chlorophyllin coupled with polyethylene glycol: a potent photosensitizer, Res.
Chem. Intermed. 22 (1996) 129–136.
(
PL-strain), Indian J. Biochem. 5 (1968) 92–101.
[
[
[
[
3] P.W. Trudgill, Microbial metabolism and transformation of selected monoter-
penes, in: C. Ratledge (Ed.), Biochemistry of Microbial Degradation, Kluwer,
London, 1994, pp. 33–61.
4] J. Schrader, Microbial flavour production, in: R.G. Berger (Ed.), Flavours
and Fragrances Chemistry, Bioprocessing and Sustainability, Springer,
Berlin/Heidelberg, 2007, pp. 509–573.
[29] T. Itoh, H. Asada, K. Tobioka, Y. Kodera, A. Matsushima, M. Hiroto, H. Nishimura,
T. Tsuzuki, T. Kamachi, I. Okura, Y. Nada, Hydrogen gas evolution and carbon
dioxide fixation with visible light by chlorophyllin coupled with polyethylene
glycol, Bioconjug. Chem. 11 (2000) 8–13.
[30] A.R. Wellburn, The spectral determination of chlorophylls a and b, as well as
total carotenoids, using various solvents with spectrophotometers of different
resolution, J. Plant Physiol. 144 (1994) 307–313.
[31] A.N. Melkozernov, R.E. Blankenship, Photosynthetic functions of chlorophylls,
in: B. Grimm, R.J. Porra, W. Rüdier, H. Scheer (Eds.), Chlorophylls and Bacte-
riochlorophylls: Biochemistry, Biophysics, Function and Application, Springer,
Amsterdam, 2006, pp. 397–412.
[32] B. Kräutler, B. Jaun, P. Matile, K. Bortlik, M. Schellenberg, On the enigma
of chlorophyll degradation: the constitution of a secoporphinoid catabolite,
Angew. Chem. Int. Ed. Engl. 30 (1991) 1315–1318.
5] S.G. Bell, R.J. Sowden, L.L. Wong, Engineering the heme monooxygenase
cytochrome P450(cam) for monoterpene oxidation, Chem. Commun. 7 (2001)
6
35–636.
6] S.G. Bell, X. Chen, R.J. Sowden, F. Xu, J.N. Williams, L.L. Wong, Z. Rao, Molecular
recognition in (+)␣-pinene oxidation by cytochrome P450, J. Am. Chem. Soc.
1
25 (2003) 705–714.
[
[
[
7] D. Mansuy, Biomimetic catalysts for selective oxidation in organic chemistry,
Pure Appl. Chem. 62 (1990) 741–746.
8] B. Meunier, Metalloporphyrins as versatile catalysts for oxidation reactions and
oxidative DNA cleavage, Chem. Rev. 92 (1992) 1411–1456.
9] J. Groves, Reactivity and mechanism of metalloporphyrin-catalyzed oxidation,
J. Porph. Phthal. 4 (2000) 350–352.
[33] J.J. Jen, G. MacKiney, On the photodecomposition of chlorophyll in vitro. I.
Reaction rates, Photochem. Photobiol. 11 (1970) 297–302.
[34] P.H. Hynninen, Modifications, in: H. Scheer (Ed.), Chlorophylls, CRC Press, Boca
Raton, FL, 1991, pp. 145–209.
[
10] T.J. McMurry, J.T. Groves, Metalloporphyrin models for cytochrome P-450, in:
P.R. Ortiz de Montellano (Ed.), Cytochrome P450, Structure, Mechanism and
Biochemistry, Plenum Press, New York/London, 1986, pp. 1–28.
[35] J.F. Rontani, G. Baillet, C. Aubert, Production of acyclic isoprenoids compounds
during the photodegradation of chlorophyll in seawater, J. Photochem. Photo-
biol. A 59 (1991) 369–377.
[36] W. Oettmeier, T.R. Janson, M.C. Thurnauer, L.L. Shipman, J.J. Katz, Spectroscopic
characterization of the pheophytin a dication, J. Phys. Chem. 61 (1977) 339–342.
[37] P.H. Hynninen, Protonation–deprotonation equilibria in tetrapyrroles. Part 1.
Protonation titrations of 132-(demethoxycarbonyl)pheophytin a in methanolic
hydrochloric acid by electronic absorption spectroscopy, J. Chem. Soc. Perkin
Trans. 2 (1991) 669–678.
[38] H. Scheer, J.J. Katz, Peripheral metal complexes: chlorophyll isomers with Mag-
nesium bound to the ring E -ketoester system, J. Am. Chem. Soc. 100 (1978)
561–571.
[39] F. Hong, Z. Wei, G. Zhao, Mechanism of lanthanum effect on the chlorophyll of
spinach, Sci. China Ser. C: Life Sci. 45 (2002) 166–176.
[11] L. Que, W. Tolman, Biologically inspired oxidation catalysis, Nature 455 (2008)
3
33–340.
[12] V. Maraval, J. Ancel, B. Meunier, Manganese(III) porphyrin catalysts for the
oxidation of terpene derivatives: a comparative study, J. Catal. 206 (2002)
3
49–357.
[
[
[
13] C.C. Guo, W.J. Yang, Y.L. Mao, Selectivity aerobic oxidation of C C and allylic C–H
bonds in ␣-pinene over simple metaloporphyrins, J. Mol. Catal. A 226 (2005)
2
79–284.
14] M. Trytek, J. Fiedurek, K. Polska, S. Radzki, Photoexcited porphyrin system as a
biomimetic catalyst for d-limonene biotransformation, Catal. Lett. 105 (2005)
1
19–126.
15] M. Trytek, J. Fiedurek, S. Radzki, A novel porphyrin-based photocatalytic system
for terpenoids production from (R)-(+)-limonene, Biotechnol. Prog. 23 (2007)
[40] J. Petrovi c´ , G. Nikoli c´ , D. Markovi c´ , In vitro complexes of copper and zinc with
chlorophyll, J. Serb. Chem. Soc. 71 (2006) 501–512.
1
31–137.
[41] J. Zvezdanovi c´ , D. Markovi c´ , G. Nikoli c´ , Different possibilities for the forma-
tion of complexes of copper and zinc with chlorophyll inside photosynthetic
organelles: chloroplasts and thylakoids, J. Serb. Chem. Soc. 72 (2007)
1053–1062.
[42] J. Zvezdanovi c´ , T. Cveti c´ , S. Veljovi c´ -Jovanovi c´ , D. Markovi c´ , Chlorophyll bleach-
ing by UV-irradiation in vitro and in situ: absorption and fluorescence studies,
Radiat. Phys. Chem. 78 (2009) 25–32.
[43] R.J. Abraham, D.A. Goff, K.M. Smith, N. M. R. spectra of porphyrins. Part 35. An
examination of the proposed models of the chlorophyll a dimer, J. Chem. Soc.
Perkin Trans. 1 (1998) 2443–2451.
[
[
[
[
16] R. Kenney, G. Fisher, Preparation of trans-pinocarveol and myrtenol, Ind. Eng.
Chem. Prod. Res. Dev. 12 (1973) 317–319.
17] H.K. Lichtenthaler, Chlorophylls and carotenoids: pigments of photosynthetic
biomembranes, Methods Enzymol. 148 (1987) 349–382.
18] C.M. Yang, K.W. Chang, M.H. Yin, H.M. Huang, Methods for the determination
of chlorophylls and their derivatives, Taiwania 43 (1998) 116–122.
19] L. Shuang, D. Feng-Qin, Y. Chun-Hong, T. Chong-Qin, K. Ting-Yun, Reconstitution
of photosystem II reaction center with Cu-chlorophyll a, J. Integr. Plant Biol. 48
(
2006) 1330–1337.
[
[
[
20] P.H. Hynninen, Protonation–deprotonation equilibria in tetrapyrroles. Part 1.
Protonation titrations of 13-(demethoxycarbonyl)pheophytin a in methanolic
hydrochloric acid by electronic absorption spectra, J. Chem. Soc. Perkin Trans.
[44] U. Krings, R.G. Berger, Biotechnological production of flavours and fragrances,
Appl. Microbiol. Biotechnol. 49 (1998) 1–8.
[45] M.S. van Dyk, E. van Rensburg, N. Moleleki, Hydroxylation of (+)limonene,
(−)␣-pinene and (−)-pinene by a Hormonema sp., Biotechnol. Lett. 20 (1998)
431–436.
[46] H. Schewe, D. Holtmann, J. Schrader, P450(BM-3)-catalyzed whole-cell bio-
transformation of alpha-pinene with recombinant Escherichia coli in an
aqueous-organic two-phase system, Appl. Microbiol. Biotechnol. 83 (2009)
849–857.
2
(1999) 669–678.
21] J. Chacon, J. McLearie, R. Sinclair, Singlet oxygen yields and radical contributions
in the dye-sensitised photo-oxidation in methanol of esters of polyunsaturated
fatty acids (oleic, linoleic, linolenic and arachidonic), Photochem. Photobiol. 47
(
1988) 647–656.
22] I. Ahmad, Q. Fasihullah, A. Noor, I. Ansari, Photolysis of riboflavin in aqueous
solution: a kinetic study, Q. Ali, Int. J. Pharm. 280 (2004) 199–208.