Potent Reversible Inhibitors of PTP CD45
J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 11 1789
dd, J ) 7.0, 7.0 Hz), 7.19 (1H, d, J ) 2.8 Hz), 6.91 (1H, dd, J
) 2.5, 8.6 Hz), 5.87 (2H, s). Anal. (C14H9NO2‚0.33H2O) C, H,
N.
1-Am in o-p h en a n th r en e-9,10-d ion e (47): purple solid; 1H
NMR (300 MHz, TFA-d1-DMSO-d6) δ 8.25 (1H, d, J ) 8.2 Hz),
8.05 (1H, dd, J ) 1.2, 7.8 Hz), 7.77 (1H, ddd, J ) 1.5, 7.2, 8.6
Hz), 6.97 (1H, dd, J ) 2.1, 7.4 Hz); HPLC 5.13 min. HRMS
theor. [M + H]: 224.0712 amu; obs. [M + H]: 224.0718 amu;
deviation of 2.9 ppm.
s), 9.29 (1H, dd, J ) 5.7, 5.7 Hz), 8.71 (1H, s), 8.39 (1H, d, J
) 7.9 Hz), 8.13 (1H, d, J ) 8.3 Hz), 8.07 (1H, dd, J ) 1.2, 7.5
Hz), 7.98 (1H, dd, J ) 1.6, 8.2 Hz), 7.85 (1H, ddd, J ) 1.3, 8.7,
8.7 Hz), 7.59 (1H, dd, J ) 7.5, 7.5 Hz), 4.03 (2H, d, J ) 5.6
Hz). Anal. (C17H11NO5‚1.0H2O) C, H, N.
Compound 57 was prepared analogously to compound 58.
[(9,10-Dioxo-9,10-d ih yd r o-p h en a n th r en e-2-ca r bon yl)-
1
a m in o]-a cetic a cid (57): orange solid; H NMR (300 MHz,
DMSO-d6) δ 12.69 (1H, s), 9.22 (1H, dd, J ) 6.0, 6.0 Hz), 8.54
(1H, d, J ) 1.9 Hz), 8.46 (1H, d, J ) 8.2 Hz), 8.39 (1H, d, J )
8.0 Hz), 8.23 (1H, dd, J ) 1.9, 8.4 Hz), 8.08 (1H, dd, J ) 1.1,
7.5 Hz), 7.82 (1H, ddd, J ) 1.5, 8.0, 8.0 Hz), 7.59 (1H, dd, J )
8.0, 8.0 Hz), 3.97 (2H, d, J ) 5.8 Hz). Anal. (C17H11NO5) C, H,
N.
N-(9,10-Dioxo-9,10-dih ydr o-ph en an th r en -2-yl)-2-flu or o-
ben za m id e (70). To a solution of 3 (50 mg, 240 µmol) in THF
(10 mL) was added an excess of Na2CO3 (1 g), followed by
2-fluorobenzoyl chloride (46 µL, 384 µmol). The mixture was
shaken overnight and then filtered, and the solvent evapo-
rated. The resulting material was purified on a silica gel
column, using CH2Cl2-10% EtOAC/CH2Cl2 as the eluant to
yield the pure amide 70 as a red solid: 1H NMR (300 MHz,
DMSO-d6) δ 10.80 (1H, s), 8.45 (1H, d, J ) 2.4 Hz), 8.30 (1H,
d, J ) 9 Hz), 8.23 (1H, d, J ) 8 Hz), 8.09 (1H, dd, J ) 2.3, 8.9
Hz), 8.02 (1H, dd, J ) 1.3, 7.7 Hz), 7.80-7.70 (2H, m), 7.62
(1H, m), 7.50 (1H, dd, J ) 7.3, 7.3 Hz), 7.38 (2H, m); HPLC
6.97 min. HRMS theor. [M + H]: 346.0879 amu; obs. [M +
H]: 346.0882 amu; deviation of 0.7 ppm.
3-Am in o-p h en a n th r en e-9,10-d ion e (48): brown solid; 1H
NMR (300 MHz, DMSO-d6) δ 7.99 (2H, m), 7.83 (1H, d, J )
8.4 Hz), 7.78 (1H, d, J ) 7.2 Hz), 7.53 (1H, dd, J ) 7.2, 7.2
Hz), 7.30 (1H, s), 6.89 (2H, s), 6.64 (1H, dd, J ) 1.5, 8.6 Hz).
Anal. (C14H9O2N‚0.10H2O) C, H, N.
1
4-Am in o-p h en a n th r en e-9,10-d ion e (49): black solid; H
NMR (300 MHz, DMSO-d6) δ 8.56 (1H, d, J ) 8.0 Hz), 7.94
(1H, dd, J ) 1.4, 7.8 Hz), 7.73 (1H, ddd, J ) 1.6, 7.8, 7.8 Hz),
7.41 (1H, ddd, J ) 1.0, 7.9, 7.9 Hz), 7.36 (1H, dd, J ) 3.2, 5.9
Hz), 7.20 (2H, m), 5.84 (2H, s). Anal. (C14H9NO2) C, H, N.
2-Br om o-p h en a n th r en e-9,10-d ion e (2). This compound
1
was prepared as described by Bhatt:48 orange solid; H NMR
(300 MHz, DMSO-d6) δ 8.30 (1H, d, J ) 7.9 Hz), 8.27 (1H, d,
J ) 8.6 Hz), 8.07 (1H, d, J ) 2.4 Hz), 8.04 (1H, d, J ) 1.0, 7.6
Hz), 7.96 (1H, dd, J ) 2.7, 8.9 Hz), 7.79 (1H, ddd, J ) 1.7, 8.2,
8.2 Hz), 7.56 (1H, dd, J ) 7.6, 7.6 Hz). Anal. (C14H7O2) C, H.
Compounds 55 and 56 were prepared as described by
Langenbeck et al.47
9,10-Dioxo-9,10-d ih yd r o-p h en a n t h r en e-2-ca r b oxylic
a cid (55): yellow solid; 1H NMR (300 MHz, DMSO-d6) δ 13.45
(1H, s), 8.51 (1H, d, J ) 1.9 Hz), 8.46 (1H, d, J ) 8.2 Hz), 8.37
(1H, d, J ) 8.0 Hz), 8.24 (1H, dd, J ) 2.0, 8.2 Hz), 8.08 (1H,
dd, J ) 0.75, 7.6 Hz), 7.83 (1H, dd, J ) 7.2, 7.2 Hz), 7.61 (1H,
dd, J ) 7.5, 7.5 Hz). Anal. (C15H8O4‚0.4 H2O) C, H.
Compounds 50, 51, 61-69, 71, and 72 were prepared
analogously to the procedure used for the preparation of
compound 70. Please see the Supporting Information for
characterization data.
N-(9,10-Dioxo-9,10-dih ydr o-ph en an th r en e-2-yl)-4-m eth -
yl-N-[(4-m eth ylph en yl)su lfon yl]-ben zen esu lfon am ide (20).
To a solution of 3 (200 mg, 900 µmol) in CH2Cl2 (10 mL) under
N2 was added Et3N (630 µL, 4.48 mmol), p-toluenesulfonyl
chloride (TsCl, 340 mg, 1.79 mmol), and a catalytic amount of
N,N-(dimethylamino)pyridine. The resultant solution was
stirred overnight, after which time it was diluted with ethyl
acetate (25 mL) and washed sequentially with saturated
aqueous NH4Cl, water, and brine and then dried over Na2-
SO4. Filtration followed by evaporation under reduced pressure
yielded a product which was purified by silica gel chromatog-
raphy using CH2Cl2 as the eluant; the first material eluted
from the column was the ditosylate 20 (39 mg, 73 µmol, 8%)
which was dried to a yellow solid: 1H NMR (300 MHz, DMSO-
d6) δ 8.39 (1H, d, J ) 8.7 Hz), 8.31 (1H, d, J ) 8.0 Hz), 8.06
(1H, dd, J ) 1.2, 7.7 Hz), 7.81 (1H, dd, J ) 7.5, 7.5 Hz), 7.73
(4H, d, J ) 8.3 Hz), 7.60 (1H, dd, J ) 7.5, 7.5 Hz), 7.54 (1H,
m), 7.52 (4H, d, J ) 8.3 Hz), 7.36 (1H, dd, J ) 2.4, 8.5 Hz),
2.50 (6H, s); HPLC 9.85 min. HRMS theor. [M + H]: 532.0889
amu; obs. [M + H]: 532.087 amu; deviation of -3.5 ppm.
N-(9,10-Dioxo-9,10-dih ydr o-ph en an th r en e-2-yl)-4-m eth -
yl-ben zen esu lfon a m id e (19). A second material which elut-
ed from the column was the monotosylate 19 (53 mg, 140
mmol, 16%) which was dried to an orange solid: 1H NMR (300
MHz, DMSO-d6) δ 10.77 (1H, s), 8.17 (1H, d, J ) 9 Hz), 8.12
(1H, d, J ) 8.1 Hz), 7.96 (1H, dd, J ) 1.5, 7.8 Hz), 7.78-7.29
(4H, m), 7.48 (1H, s), 7.46 (1H, t, J ) 8.4 Hz), 7.38 (2H, d, J
) 8.1 Hz), 2.32 (3H, s); HPLC 7.14 min. HRMS theor. [M +
H]: 378.08 amu; obs. [M + H]: 378.0798 amu; deviation of
-0.5 ppm.
9,10-Dioxo-9,10-d ih yd r o-p h en a n t h r en e-3-ca r b oxylic
a cid (56): orange solid; 1H NMR (300 MHz, DMSO-d6) δ 13.66
(1H, br s), 8.71 (1H, s), 8.35 (1H, d, J ) 8.0 Hz), 8.12 (1H, d,
J ) 8.0 Hz), 8.08-8.02 (2H, m), 7.81 (1H, dd, J ) 7.5, 7.5 Hz),
7.58 (1H, dd, J ) 7.5, 7.5 Hz). Anal. (C15H8O4‚0.2H2O) C, H.
[(9,10-Dioxo-9,10-d ih yd r o-p h en a n th r en e-3-ca r bon yl)-
a m in o]-a cetic Acid ter t-Bu tyl Ester (60). To a solution of
56 (1.1 g, 4.5 mmol) in anhydrous DMF (10 mL) under N2 was
added tert-butyl glycine hydrochloride (760 mg, 4.6 mmol),
EDC (1.1 g, 6.0 mmol), DMAP (60 mg, 500 µmol), and
diisopropylethylamine (2.1 mL, 12 mmol), and the resultant
solution was stirred for 16 h. The reaction was diluted with
EtOAc and washed with 1 M HCl, water, saturated aqueous
NaHCO3, and brine. The organic layer was dried over MgSO4,
filtered, concentrated, and chromatographed on silica gel (3:1
EtOAc:CH2Cl2, v/v) to afford a yellow solid (500 mg). This solid
was subsequently recrystallized from refluxing EtOAc to afford
pure 60 (310 mg, 31%): yellow solid; 1H NMR (300 MHz,
DMSO-d6) δ 9.29 (1H, dd, J ) 6.1, 6.1 Hz), 8.71 (1H, s), 8.38
(1H, d, J ) 8.0 Hz), 8.13 (1H, d, J ) 8.3 Hz), 8.07 (1H, dd, J
) 1.5, 7.9 Hz), 7.97 (1H, dd, J ) 1.5, 8.3 Hz), 7.85 (1H, ddd, J
) 1.5, 7.8, 7.8 Hz), 7.58 (1H, ddd, J ) 7.2, 7.2 Hz), 4.00 (2H,
d, J ) 6.1 Hz), 1.45 (9H, s). Anal. (C21H19NO5‚0.2H2O) C, H,
N.
Compound 59 was prepared analogously to compound 60.
[(9,10-Dioxo-9,10-d ih yd r o-p h en a n th r en e-2-ca r bon yl)-
a m in o]-a cetic a cid ter t-bu tyl ester (59): yellow solid; 1H
NMR (300 MHz, DMSO-d6) δ 9.23 (1H, dd, J ) 5.7, 5.7 Hz),
8.54 (1H, d, J ) 1.9 Hz), 8.46 (1H, d, J ) 8.7 Hz), 8.39 (1H, d,
J ) 7.9 Hz), 8.22 (1H, dd, J ) 2.3, 8.7 Hz), 8.07 (1H, dd, J )
1.6, 7.7 Hz), 7.82 (1H, ddd, J ) 1.5, 7.9, 7.9 Hz), 7.59 (1H, dd,
J ) 7.4, 7.4 Hz), 3.94 (2H, d, J ) 6.3 Hz), 1.44 (9H, s). Anal.
(C21H19NO5‚0.1H2O) C, H, N.
[(9,10-Dioxo-9,10-d ih yd r o-p h en a n th r en e-3-ca r bon yl)-
a m in o]-a cetic Acid (58). To a solution of 60 (200 mg, 550
µmol) in CH2Cl2 (10 mL) under N2 was added TFA (10 mL).
This mixture was stirred for 2 h and concentrated under
reduced pressure. The residue was dissolved in CH2Cl2 and
evaporated once again to rid residual TFA. The material was
recrystallized from refluxing EtOAc to afford 58 (70 mg,
47%): orange solid; 1H NMR (300 MHz, DMSO-d6) δ 12.7 (1H,
2-Ben zofu r a n -2-yl-p h en a n th r en e-9,10-d ion e (73). To a
mixture of 2 (150 mg, 520 µmol) in dioxane (5 mL) and H2O
(0.5 mL) were added benzo[b]furan-2-boronic acid (169 mg, 1.4
mmol), tris(dibenzylideneacetone)-dipalladium(0) (48 mg, 52
µmol), tri-o-tolylphosphine (32 mg, 1.4 mmol), and K2CO3 (220
mg, 1.57 mmol). The resultant mixture was heated at 80 °C
for 18 h, and the solid material was removed by filtration. The
soluble material was purified using a Rainin preparative
HPLC on a Rainin phenyl column (25 cm × 21.4 mm, 8 µM
particle size, 60 Å), 40 mL/min, with 50%-80% dioxane/H2O
for 40 min, followed by 80%-50% for 5 min. If the purity at
this stage was not sufficient, the material was then chromato-