ChemCatChem
10.1002/cctc.201900446
COMMUNICATION
commercially available Ru(bpy)
3
(PF
6
)
2
as visible light
46, 5193-5203; j) I. K. Sideri, E. Voutyritsaa, C. G. Kokotos, Org. Biomol.
Chem. 2018, 16, 4596-4614. See also: k) Special Issue on photoredox
catalysis: Eur. J. Org. Soc. 2017, issue 15, 1978-2204.
photocatalyst. Accordingly, (fluorinated)alkyl halides, arylsulfonyl
chlorides or various N-(acyloxy)phthalimides (NHPI esters) were
effectively reacted. Moreover, the applicability of the process was
also proved by the late stage functionalization of the naturally
occurring peptide thiostrepton. In addition, the determination of
the quantum yield, quenching and deuterium experiments were
performed to enlighten the reaction mechanism. Moreover, we
[
4]
5]
C. Bottecchia, T. Noël, Chem. Eur. J. 2019, 25, 26-42.
[
a) C. A. DeForest, K. S. Anseth, Angew. Chem. Int. Ed. 2012, 51, 1816-
1819; b) E. L. Tyson, M. S. Ament, T. P. Yoon, J. Org. Chem. 2013, 78,
2046-2050; c) M. H. Keylor, J. E. Park, C.-J. Wallentin, C. R. J.
Stephenson, Tetrahedron 2014, 70, 4264-4269; d) G. Zhao, S. Kaur, T.
Wang, Org. Lett. 2017, 19, 3291-3294; e) C. Bottecchia, M. Rubens, S.
B. Gunnoo, V. Hessel, A. Madder, T. Noël, Angew. Chem. Int. Ed. 2017,
2
found that the co-solvent H O is more prompt than the HE to
participate in the final protonation step.
56, 12702-12707; f) B. A. Vara, X. Li, S. Berritt, C. R. Walters, E. J.
Petersson, G. A. Molander, Chem. Sci. 2018, 9, 336-344.
[
6]
7]
N. Emmanuel, C. Mendoza, M. Winter, C. R. Horn, A. Vizza, L. Dreesen,
B. Heinrichs, J.-C. M. Monbaliu, Org. Process Res. Dev. 2017, 21, 1435-
Experimental Section
1438.
[
a) K. Kim, D. A. Fancy, D. Carney, T. Kodadek, J. Am. Chem. Soc. 1999,
121, 11896-11897. See also: b) S. Sato, H. Nakamura, Angew. Chem.
Int. Ed. 2013, 52, 8681-8684; c) N. Ichiishi, J. P. Caldwell, M. Lin, W.
Zhong, X. Zhu, E. Streckfuss, H.-Y. Kim, C. A. Parish, S. W. Krska, Chem.
Sci. 2018, 9, 4168-4175.
3 6 2
General catalytic procedure: In a screw cap vial, Ru(bpy) (PF ) (3.4 mg,
0.004 mmol, 2 mol%), dehydroamino acid 1 or peptide (0.2 mmol, 1 eq.),
HE or Me-HE (0.4 mmol, 2 eq.) and the coupling partner 2 (0.6 mmol, 3
eq.) were added and the vial was degassed three times by evacuating and
refilling with Argon. 2 mL of a 5:1 mixture of MeCN/H
2
O was added and
[8]
[9]
a) Y. Yu, L.-K. Zhang, A. V. Buevich, G. Li, H. Tang, P. Vachal, S. L.
Colletti, Z.- C. Shi, J. Am. Chem. Soc. 2018, 140, 6797-6800; b) Y. Wang,
J. Wang, G.-X. Li, G. He, G. Chen, Org. Lett. 2017, 19, 1442-1445.
a) M. Jiang, Y. Jin, H. Yang, H. Fu, Sci. Reports 2016, 6, 26161. For C-
terminal couplings, see: b) S. Bloom, C. Liu, D. K. Kölmel, J. X. Qiao, Y.
Zhang, M. A. Poss, W. R. Ewing, D. W. C. MacMillan, Nat. Chem. 2017,
10, 205-211; c) W.-M. Cheng, R. Shang, Y. Fu, ACS Catal. 2017, 7, 907-
911. For side-chain modifications, see: d) M. Jiang, H. Yang, H. Fu, Org.
Lett. 2016, 18, 1968-1971.
the vial was degassed by three freeze-pump-thaw cycles. The reaction
mixture was stirred at room temperature for 18 h under irradiation of blue
light. Then, the mixture was transferred in a separation funnel and 5mL
DCM and 5 mL water was added. The phases were separated and the
aqueous phase was extracted three times with DCM. The combined
organic layers were washed with brine, dried over MgSO , filtered, and
4
concentrated under reduced pressure. The residue was purified by flash
column chromatography.
[
10] a) R. A. Aycock, D. B. Vogt, N. T. Jui, Chem. Sci. 2017, 8, 7998-8003; b)
R. A. Aycock, C. J. Pratt, N. T. Jui, ACS Catal. 2018, 8, 9115-9119; c) A.
D. de Bruijn, G. Roelfes, Chem. Eur. J. 2018, 24, 11314-11318; d) T.
Rossolini, J. A. Leitch, R. Grainger, D. J. Dixon, Org. Lett. 2018, 20,
Acknowledgements
6794-6798.
INTERREG V A, ETZ 2014-2020 – Bayern-Czech Republic
[11] a) D. Siodłak, Amino Acids 2015, 47, 1-17; b) C. Bonauer, T. Walenzyk,
B. Konig, Synthesis 2006, 1-20; c) U. Schmidt, A. Lieberknecht, J. Wild,
Synthesis 1988, 159-172.
(
project 41) is gratefully acknowledged for generous support.
[
[
[
12] D. P. Hari, B. König, Chem. Commun. 2014, 50, 6688-6699.
13] P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 2006, 12, 2579-2586.
14] For the inclusion of fluorinated moieties into cysteine-containing amino
acids, see: C. Bottecchia, X.-J. Wei, K. P. L. Kuijpers, V. Hessel, T. Noël,
J. Org. Chem. 2016, 81, 7301-7307.
Keywords: Photoredox catalysis • Dehydroamino acids •
Peptides • Visible light • Ruthenium
[
[
1]
2]
a) J. L. Lau, M. K. Dunn, Bioorg. Med. Chem. 2018, 26, 2700-2707; b)
Amino Acids, Peptides and Proteins in Organic Chemistry, Vol. 1-3 (Ed.:
A.B. Hughes), Wiley-VCH, Weinheim, 2011, c) S.-E. Ong, M. Mann, Nat.
Chem. Biol. 2005, 1, 252-262; d) Amino Acids and Peptides, (Ed.: G. C.
Barrett), Cambridge University Press, Cambridge, 1998; e) J. M.
Humphrey, A. R. Chamberlin, Chem. Rev. 1997, 97, 2243-2266.
[15] a) S. Murarka, Adv. Synth. Catal. 2018, 360, 1735-1753. For the pioneer
work, see: b) K. Okada, K. Okamoto, M. Oda, J. Am. Chem. Soc. 1988,
110, 8736-8738. Few selected examples: c) M. Zlotorzynska, G. M.
Sammis, Org. Lett. 2011, 13, 6264-6267; d) M. J. Schnermann, L. E.
Overman, Angew. Chem. Int. Ed. 2012, 51, 9576-9580; e) Y. Jin, H. Yang,
H. Fu, Org. Lett. 2016, 18, 6400-6403; f) A. Tlahuext-Aca, R. A. Garza-
Sanchez, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 3708-3711.
[16] a) R. Donovick, J. F. Pagano, H. A. Stout, M. J. Weinstein, Antibiot Annu.
1955, 3, 554-559; b) J. M. Kwok, S. S. Myatt, C. M. Marson, R. C.
Coombes, D. Constantinidou, E. W. Lam, Mol. Cancer Ther. 2008, 7,
2022-2032; c) W. L. Kelly, L. Pan, C. Li J. Am. Chem. Soc. 2009, 131,
4327-4334.
a) Peptide-based Drug Discovery: Challenges and New Therapeutics,
(Ed.: V. Srivastava), In Drug Discovery Series Nr. 59, The Royal Society
of Chemistry, Croydon, 2017; b) Q.-Y. Hu, F. Bertiband, R. Adamo,
Chem. Soc. Rev. 2016, 45, 1691-171; c) O. Boutureira, G. J. L.
Bernardes, Chem. Rev. 2015, 115, 2174-2195; d) O. Konievab, A.
Wagner, Chem. Soc. Rev. 2015, 44, 5495-5551; e) L. Otvos, Jr., J. D.
Wade, Front Chem. 2014, 2, 62; f) C. Nájera, J- M. Sansano, Chem. Rev.
2
007, 107, 4584-4671.
[17] See e.g.: K. P. L. Kuijpers, C. Bottecchia, D. Cambié, K. Drummen, N. J.
König, T. Noël, Angew. Chem. Int. Ed. 2018, 57, 11278-11282.
[18] Due to solubility issues, higher concentrations as 0.08M for the HE
quencher loading could not be used.
[3]
a) C. R. J. Stephenson, T. P. Yoon, D. W. C. MacMillan, Visible Light
Photocatalysis in Organic Chemistry, Wiley-VCH, 2018, Weinheim.
Selected reviews: a) K. Zeitler, Angew. Chem. Int. Ed. 2009, 48, 9785-
9
789; b) T. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527-532;
[19] a) C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J. Stephenson, J.
Am. Chem. Soc. 2012, 134, 8875-8884; b) I. Triandafillidi, M. G. Kokotou,
C. G. Kokotos, Org. Lett. 2018, 20, 136-39. See also ref. 10a.
c) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40,
102-113; d) J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828-
6838; e) D. Ravelli, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2013, 42, 97-
113; f) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013,
113, 5322-5363; g) X. Lang, J. Zhao, X. Chen, Chem. Soc. Rev. 2016,
45, 3026-3038; h) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116,
10075-10166; i) J. Xie, H. Jinb, A. S. K. Hashmi, Chem. Soc. Rev. 2017,
[20] Though presenting a lower K
q
, a fluorescence quenching of the Ru-
catalyst with Cl CBr could also be observed (see S.I.). Therefore, an
3
alternative mechanism implying an oxidative quenching by the coupling
reagent could not be excluded.
This article is protected by copyright. All rights reserved.